

Monthly Constraint Report

November 2019

A report for the National Electricity Market

Important notice

PURPOSE

This publication has been prepared by AEMO to provide information about constraint equation performance and related issues, as at the date of publication.

DISCLAIMER

This document or the information in it may be subsequently updated or amended. This document does not constitute legal or business advice, and should not be relied on as a substitute for obtaining detailed advice about the National Electricity Law, the National Electricity Rules, or any other applicable laws, procedures or policies. AEMO has made every effort to ensure the quality of the information in this document but cannot guarantee its accuracy or completeness.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this document:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this document; and
- are not liable (whether by reason of negligence or otherwise) for any statements or representations in this document, or any omissions from it, or for any use or reliance on the information in it.

Contents

1.	Introduction	5
2.	Constraint Equation Performance	5
2.1	Top 10 binding constraint equations	5
2.2	Top 10 binding impact constraint equations	6
2.3	Top 10 violating constraint equations	7
2.4	Top 10 binding interconnector limit setters	8
2.5	Constraint Automation Usage	9
2.6	Binding Dispatch Hours	9
2.7	Binding Constraint Equations by Limit Type	11
2.8	Binding Impact Comparison	11
2.9	Pre-dispatch RHS Accuracy	12
3.	Generator / Transmission Changes	14
3.1	Constraint Equation Changes	14

Tables

Table 1	Top 10 binding network constraint equations	5
Table 2	Top 10 binding impact network constraint equations	6
Table 3	Top 10 violating constraint equations	7
Table 4	Reasons for constraint equation violations	8
Table 5	Top 10 binding interconnector limit setters	8
Table 6	Top 10 largest Dispatch / Pre-dispatch differences	12
Table 7	Generator and transmission changes	14

Figures

Figure 1 Interconnector binding dispatch hours	10
Figure 2 Regional binding dispatch hours	10
Figure 3 Binding by limit type	11
Figure 4 Binding Impact comparison	12

Figure 5	Constraint equation changes	15
Figure 6	Constraint equation changes per month compared to previous two years	15

1. Introduction

This report details constraint equation performance and transmission congestion related issues for November 2019. Included are investigations of violating constraint equations, usage of the constraint automation and performance of Pre-dispatch constraint equations. Transmission and generation changes are also detailed along with the number of constraint equation changes.

2. Constraint Equation Performance

2.1 Top 10 binding constraint equations

A constraint equation is binding when the power system flows managed by it have reached the applicable thermal or stability limit or the constraint equation is setting a Frequency Control Ancillary Service (FCAS) requirement. Normally there is one constraint equation setting the FCAS requirement for each of the eight services at any time. This leads to many more hours of binding for FCAS constraint equations - as such these have been excluded from the following table.

Constraint Equation ID (System Normal Bold)	Description	#DIs (Hours)	Change Date
N>N-NIL_CLDP_1	Out= Nil, avoid O/L Coleambally to Darlington Point 132kV line (99T) on Nil trip, Feedback	2176 (181.33)	3/12/2019
SVML_ZERO	SA to Vic on ML upper transfer limit of 0 MW	1559 (129.91)	21/08/2013
QNTE_SUPPORT	Qld to NSW on Terranora Interconnector minimum transfer >= Terranora load plus 29 MW threshold.	963 (80.25)	20/11/2019
NQTE060	NSW to Qld on Terranora Interconnector upper transfer limit of -60 MW	959 (79.91)	28/03/2018
S_NIL_STRENGTH_1	Upper limit (1300 to 1750 MW) for South Australian non-synchronous generation for minimum synchronous generators online for system strength requirements. Automatically swamps out when required HIGH combination is online.	949 (79.08)	16/09/2019
V_GANWRSF_FLT_25	Limit Gannawarra solar farm upper limit to 25 MW to manage post contingent voltage oscillation	926 (77.16)	4/09/2019
T>T_NIL_110_1	Out = NIL, avoid pre-contingent O/L of the Derby to Scottsdale Tee 110 kV line, feedback	648 (54.0)	11/01/2019
V_KARADSF_FLT_45	Limit Karadoc solar Farm upper limit to 45 MW to manage post contingent voltage oscillation	565 (47.08)	19/07/2019
Q_LILYSF1_ZERO	Lilyvale Solar Farm upper limit of 0 MW	504 (42.0)	20/08/2018

Table 1 Top 10 binding network constraint equations

Constraint Equation ID Description System Normal Bold)		#DIs (Hours)	Change Date
S>VMLMHNW1	Out = Monash to North West Bend # 1132kV line, limit Murraylink (SA to Vic) to avoid overloading Monash-North West Bend # 2132kV line	487 (40.58)	17/05/2019

2.2 Top 10 binding impact constraint equations

Binding constraint equations affect electricity market pricing. The binding impact is used to distinguish the severity of different binding constraint equations.

The binding impact of a constraint is derived by summarising the marginal value for each dispatch interval (DI) from the marginal constraint cost (MCC) re-run¹ over the period considered. The marginal value is a mathematical term for the binding impact arising from relaxing the RHS of a binding constraint by one MW. As the market clears each DI, the binding impact is measured in \$/MW/DI.

The binding impact in \$/MW/DI is a relative comparison and a helpful way to analyse congestion issues. It can be converted to \$/MWh by dividing the binding impact by 12 (as there are 12 DIs per hour). This value of congestion is still only a proxy (and always an upper bound) of the value per MW of congestion over the period calculated; any change to the limits (RHS) may cause other constraints to bind almost immediately after.

Constraint Equation ID (System Normal Bold)	D Description		Marginal Change Date Values	
N>N-NIL_CLDP_1	Out= Nil, avoid O/L Coleambally to Darlington Point 132kV line (99T) on Nil trip, Feedback	2,227,678	3/12/2019	
S_NIL_STRENGTH_1	Upper limit (1300 to 1750 MW) for South Australian non-synchronous generation for minimum synchronous generators online for system strength requirements. Automatically swamps out when required HIGH combination is online.	1,172,747	16/09/2019	
T>T_NIL_110_1	Out = NIL, avoid pre-contingent O/L of the Derby to Scottsdale Tee 110 kV line, feedback	687,024	11/01/2019	
Q_LILYSF1_ZERO	Lilyvale Solar Farm upper limit of 0 MW	531,081	20/08/2018	
F_S++HYSE_L60	Out = (Heywood to South East) or (Heywood transformers) or (Heywood to Mortlake) or (Heywood to Tarrone) or (Moorabool to Mortlake) or (Moorabool to Sydenham) or (Moorabool to Tarrone), SA Lower 60 sec Requirement for risk of islanding	368,585	13/09/2019	
V_VS_LB_CAN_50	Limit Heywood + Lake Bonney WF + Canunda WF <= 50 MW for system strength requirement when SA is at risk of separation.	299,276	16/09/2019	
F_S+TL_L6_OD	Lower 6 sec Service Requirement for SA Network Event, Loss of Davenport to Olympic Dam West 275kV line offload the entire Olympic Dam load	296,422	21/11/2013	
F_S++HYSE_L6_1	Out = (Heywood to South East) or (Heywood transformers) or (Heywood to Mortlake) or (Heywood to Tarrone) or (Moorabool to Mortlake) or (Moorabool to Sydenham) or (Moorabool to Tarrone), SA Lower 6 sec Requirement for risk of islanding, segment1	281,745	25/11/2015	
F_MAIN+NIL_DYN_RREG	Mainland Raise Regulation Requirement, Feedback in Dispatch, increase by 60 MW for each 1s of time error below -1.5s	271,878	23/05/2019	

Table 2 Top 10 binding impact network constraint equations

¹ The MCC re-run relaxes any violating constraint equations and constraint equations with a marginal value equal to the constraint equation's violation penalty factor (CVP) x market price cap (MPC). The calculation caps the marginal value in each DI at the MPC value valid on that date. MPC is increased annually on 1st July.

Constraint Equation ID (System Normal Bold)	Description	∑ Marginal Values	Change Date
F_I+LREG_0210	NEM Lower Regulation Requirement greater than 210 MW	159,182	16/05/2019

2.3 Top 10 violating constraint equations

A constraint equation is violating when NEMDE is unable to dispatch the entities on the left-hand side (LHS) so the summated LHS value is less than or equal to, or greater than or equal to, the right-hand side (RHS) value (depending on the mathematical operator selected for the constraint equation). The following table includes the FCAS constraint equations. Reasons for the violations are covered in 2.3.1.

Table 3 Top 10 violating constraint equations

Table	1 – Top	10	violatina	constraint	equations
JUDIE	1 - 10p	10	violuning	COnstruint	equalions

Constraint Equation ID (System Normal Bold)	Description	#DIs (Hours)	Change Date
F_S+PPT_R6_1	Raise 6 sec Service Requirement for SA Generation Event, where Pelican Point GT11 or GT12 or ST is the largest generation risk in SA, Segment 1	35 (2.91)	11/11/2015
F_S++HYSE_L60	Out = (Heywood to South East) or (Heywood transformers) or (Heywood to Mortlake) or (Heywood to Tarrone) or (Moorabool to Mortlake) or (Moorabool to Sydenham) or (Moorabool to Tarrone), SA Lower 60 sec Requirement for risk of islanding		13/09/2019
F_S+TL_L6_OD	Lower 6 sec Service Requirement for SA Network Event, Loss of Davenport to Olympic Dam West 275kV line offload the entire Olympic Dam load	21 (1.75)	21/11/2013
F_S+TL_L60_OD	Lower 60 sec Service Requirement for SA Network Event, Loss of Davenport to Olympic Dam West 275kV line offload the entire Olympic Dam load	21 (1.75)	21/11/2013
SA_ISLE_STRENGTH_LB	Maximum limit (0 MW) for Lake Bonney and Canunda Wind Farm for system strength requirements when SA is at risk of separation or when islanded.	20 (1.66)	13/09/2019
F_S++HYSE_L6_1	Out = (Heywood to South East) or (Heywood transformers) or (Heywood to Mortlake) or (Heywood to Tarrone) or (Moorabool to Mortlake) or (Moorabool to Sydenham) or (Moorabool to Tarrone), SA Lower 6 sec Requirement for risk of islanding, segment1	16 (1.33)	25/11/2015
S^NIL_PL_MAX	Out = Nil, Maximum generation at Port Lincoln Due to voltage stability limit.	10 (0.83)	14/06/2019
F_T+NIL_WF_TG_R6	Out= Nil, Tasmania Raise 6 sec requirement for loss of a Smithton to Woolnorth or Norwood to Scotsdale tee Derby line, Basslink unable to transfer FCAS	8 (0.66)	12/04/2016
F_S+PPT_R6_2	Raise 6 sec Service Requirement for SA Generation Event, where Pelican Point GT11 or GT12 or ST is the largest generation risk in SA, Segment 2	6 (0.5)	11/11/2015
F_T_AUFLS2_R6	TAS AUFLS2 control scheme. Limit R6 enablement based on loaded armed for shedding by scheme.	6 (0.5)	4/05/2018

2.3.1 Reasons for constraint equation violations

Table 4 Reasons for constraint equation violations

Table 2 – Reasons for Top 10 violating constraint equations

Constraint Equation ID (System Normal Bold)	Description
F_S+PPT_R6_1	Constraint equation violated for 35 non-consecutive DIs,11 of which were consecutive. Max violation of 49.34 MW occurred on 16/11/2019 at 1900 hrs. Constraint equation violated due to South Australia Raise 6 second service availability being less than the requirement.
F_S++HYSE_L60	Constraint equation violated for 24 non-consecutive DIs. Max violation of 90.44 MW occurred on 07/11/2019 at 0535 hrs. Constraint equation violated due to South Australia Lower 60 second service availability being less than the requirement.
F_S+TL_L6_OD	Constraint equation violated for 21 consecutive DIs. Max violation of 218.2 MW occurred on 16/11/2019 at 1820 hrs. Constraint equation violated due to South Australia Lower 6 second service availability being less than the requirement.
F_S+TL_L60_OD	Constraint equation violated for 21 consecutive DIs. Max violation of 32.11 MW occurred on 16/11/2019 at 1820 hrs. Constraint equation violated due to the same reason as F_S++HYSE_L60.
SA_ISLE_STRENGTH_LB	Constraint equation violated for 20 consecutive DIs. Max violation of 53.49 MW occurred on 16/11/2019 at 1925 hrs. Constraint equation violated due to non-scheduled Windfarms (Lake Bonney 1 and Canunda) generating more than the requirement.
F_S++HYSE_L6_1	Constraint equation violated for 16 non-consecutive DIs. Max violation of 71.29 MW occurred on 07/11/2019 at 0535 hrs. Constraint equation violated due to the same reason as F_S+TL_L6_OD.
S^NIL_PL_MAX	Constraint equation violated for 10 consecutive DIs. Max violation of 5.32 MW occurred on 11/11/2019 at 1640 hrs. Constraint equation violated due to non-scheduled Windfarm (Cathedral rock) generating more than the requirement.
F_T+NIL_WF_TG_R6	Constraint equation violated for 8 non-consecutive DIs. Max violation of 36 MW occurred on 07/11/2019 at 0750 hrs. Constraint equation violated due to the same reason as F_S+PPT_R6_1.
F_S+PPT_R6_2	Constraint equation violated for 6 non-consecutive DIs. Max violation of 87.72 MW occurred on 16/11/2019 at 1900 hrs. Constraint equation violated due to the same reason as F_S+PPT_R6_1.
F_T_AUFLS2_R6	Constraint equation violated for 6 non-consecutive DIs. Max violation of 18.59 MW occurred 27/11/2019 at 0925hrs. Constraint equation violated due to the same reason as F_S+PPT_R6_1.

2.4 Top 10 binding interconnector limit setters

Binding constraint equations can set the interconnector limits for each of the interconnectors on the constraint equation left-hand side (LHS). Table 5 lists the top (by binding hours) interconnector limit setters for all the interconnectors in the NEM and for each direction on that interconnector.

Constraint Equation ID (System Normal Bold)	Interconne ctor	Description	#DIs (Hours)	Average Limit (Max)
SVML_ZERO	V-S- MNSP1 Import	SA to Vic on ML upper transfer limit of 0 MW	1559 (129.92)	0.0 (0.0)
F_MAIN++NIL_MG_R5	T-V- MNSP1 Export	Out = Nil, Raise 5 min requirement for a Mainland Generation Event, Basslink able transfer FCAS	1352 (112.67)	-8.76 (473.0)

Table 5 Top 10 binding interconnector limit setters

Constraint Equation ID (System Normal Bold)	Interconne ctor	Description	#DIs (Hours)	Average Limit (Max)
F_MAIN++NIL_MG_R6	T-V- MNSP1 Export	Out = Nil, Raise 6 sec requirement for a Mainland Generation Event, Basslink able transfer FCAS	1317 (109.75)	-35.55 (473.0)
F_Q++BCDM_L6	NSW1- QLD1 Import	Out = Bulli Creek to Dumaresq (8L or 8M) or Dumaresq to Sapphire (8J) line, Qld Lower 6 sec Requirement	1178 (98.17)	-233.17 (-334.68)
QNTE_SUPPORT	N-Q- MNSP1 Export	Qld to NSW on Terranora Interconnector minimum transfer >= Terranora load plus 29 MW threshold.	959 (79.92)	-46.01 (-33.2)
NQTE060	N-Q- MNSP1 Export	NSW to Qld on Terranora Interconnector upper transfer limit of -60 MW	958 (79.83)	-60.0 (-60.0)
F_MAIN++NIL_MG_R60	T-V- MNSP1 Export	Out = Nil, Raise 60 sec requirement for a Mainland Generation Event, Basslink able transfer FCAS	899 (74.92)	56.3 (445.0)
F_MAIN++APD_TL_L5	T-V- MNSP1 Import	Out = Nil, Lower 5 min Service Requirement for a Mainland Network Event- loss of APD potlines due to undervoltage following a fault on MOPS-HYTS- APD 500 kV line, Basslink able to transfer FCAS	838 (69.83)	37.02 (-460.0)
S>VMLMHNW1	V-S- MNSP1 Import	Out = Monash to North West Bend # 1 132kV line, limit Murraylink (SA to Vic) to avoid overloading Monash-North West Bend # 2 132kV line	487 (40.58)	-61.7 (-92.86)
S>NIL_NIL_NWMH2	V-S- MNSP1 Import	Out= Nil, avoid O/L North West Bend-Monash #2 132kV on Nil trip, Feedback	423 (35.25)	-58.78 (-85.31)

2.5 Constraint Automation Usage

The constraint automation is an application in AEMO's energy management system (EMS) which generates thermal overload constraint equations based on the current or planned state of the power system. It is currently used by on-line staff to create thermal overload constraint equations for power system conditions where there were no existing constraint equations or the existing constraint equations did not operate correctly.

The following section details the reason for each invocation of the non-real time constraint automation constraint sets and the results of AEMO's investigation into each case.

Non-real time constraint automation was not used.

2.5.1 Further Investigation

Non-real time constraint automation was not used.

2.6 Binding Dispatch Hours

This section examines the number of hours of binding constraint equations on each interconnector and by region. The results are further categorized into five types: system normal, outage, FCAS (both outage and system normal), constraint automation and quick constraints.

In the following graph the export binding hours are indicated as positive numbers and import with negative values.

Figure 1 Interconnector binding dispatch hours

The regional comparison graph below uses the same categories as in Figure 1 as well as non-conformance, network support agreement and ramping. Constraint equations that cross a region boundary are allocated to the sending end region. Global FCAS covers both global and mainland requirements.

Figure 2 Regional binding dispatch hours

2.7 Binding Constraint Equations by Limit Type

The following pie charts show the percentage of dispatch intervals from for November 2019 that the different types of constraint equations bound.

Figure 3 Binding by limit type

2.8 Binding Impact Comparison

The following graph compares the cumulative binding impact (calculated by summating the marginal values from the MCC re-run – the same as in section 2.2) for each month for the current year (indicated by type as a stacked bar chart) against the cumulative values from the previous two years (the line graphs). The current year is further categorised into system normal (NIL), outage, network support agreement (NSA) and negative residue constraint equation types.

Figure 4 Binding Impact comparison

2.9 Pre-dispatch RHS Accuracy

Pre-dispatch RHS accuracy is measured by the comparing the dispatch RHS value and the pre-dispatch RHS value forecast four hours in the future. The following table shows the pre-dispatch accuracy of the top ten largest differences for binding (in dispatch or pre-dispatch) constraint equations. This excludes FCAS constraint equations, constraint equations that violated in Dispatch, differences larger than ±9500 (this is to exclude constraint equations with swamping logic) and constraint equations that only bound for one or two Dispatch intervals. AEMO investigates constraint equations that have a Dispatch/Pre-dispatch RHS difference greater than 5% and ten absolute difference which have either bound for greater than 25 dispatch intervals or have a greater than \$1,000 binding impact. The investigations are detailed in 2.9.1.

Constraint Equation ID (System Normal Bold)	Description	#DIs	% + Max Diff	% + Avg Diff
Q_NIL_STRGTH_MEWF	Out= Nil, Limit Mt Emerald WF to 100% capacity (53 turbines) if Kar >=2 (not behind a single Tx during daytime) + Stan >= 2 + Cal >=1 + Glad >= 3 and (Stan+Cal+Glad) >=7,75% if Kar<2,66% if no Barron Gorge. Zero otherwise.	41	117,999,900 % (117.99)	117,999,900 % (117.99)
Q_STR_43239_MEWF_26D	Limit Mt Emerald WF to 50% capacity (26 turbines) if (Kareeya >= $2 + \text{Invicta on OR Kareeya=4} + \text{Stanwell} >= 3 + \text{Callide} >= 2 + \text{Gladstone} >= 3 + (\text{Stan+Cal+Glad} >= 9) + \text{Haughton} > 0 + \text{Sun Metals} > 0. Zero otherwise.$	35	90,000,000% (90.)	90,000,000% (90.)
Q_NIL_STRGTH_HAUSF	Out = Nil, Limit Haughton SF to 70% capacity (56 inverters) if Kar >= $2(2 TX)$ + Stan>= 2 + Cal>=1 + Glad>= 3 and (Stan+Cal+Glad) >=7, Swamp if Kar >= 2 (2 TX)+ Stan >= 3 + Cal>= 3 + Gladstone >= 3 and (Stan+Cal+Glad) >=10. 50% if Kareeya < 2. Zero otherwise		77,000,000% (77.)	77,000,000% (77.)
Q_STR_43239_SMSF_38	Limit Sun Metals SF to 50% capacity (38 inverters), if (Kareeya >= 2 + Invicta on OR Kareeya=4) + Stanwell >=3 + Callide >=2 + Gladstone >=3 + (Stan+Cal+Glad >=9). Zero otherwise.	34	61,000,000% (61.)	61,000,000% (61.)

Table 6 Top 10 largest Dispatch / Pre-dispatch differences

Constraint Equation ID (System Normal Bold)	Description	#DIs	% + Max Diff	% + Avg Diff
Q_STR_43239_HASF_40	Limit Haughton SF to 50% capacity (40 inverters), if (Kareeya >= 2 + Invicta on OR Kareeya=4) + Stanwell >=3 + Callide >=2 + Gladstone >=3 + (Stan+Cal+Glad >=9). Zero otherwise.	37	55,000,000% (55.)	55,000,000% (55.)
V_MLMO_VS_LB_CAN_50	Out = Moorabool to Mortlake 500 kV line, TRTS 500kV centre CB fail timer set to zero, No.2 HYTS line CB at APD OPEN, limit Heywood + Lake Bonney WF + Canunda WF <= 50 MW for system strength requirement. Constraint swamp out if MOPS generating.	50	6,468% (119.74)	298% (40.17)
V^SML_HORC_3	Out = Horsham to Murra Warra to Red Cliffs 220kV line OR Murra Warra to Red Cliffs 220kV line, avoid voltage collapse for loss of Bendigo to Kerang 220kV line	5	5,408% (147.97)	1,289% (97.55)
V^SML_BAWB_3	Out = Ballarat to Waubra 220kV line, avoid voltage collapse for loss of Bendigo to Kerang 220kV line	12	2,789% (40.12)	266% (18.29)
N^N_CHLS_1	Out= Coffs Harbour to Lismore (89), avoid voltage collapse on trip of Koolkhan to Lismore (967), swamp out when all 3 Directlink O/S	27	1,651% (48.19)	173% (29.9)
V_VS_LB_CAN_50	Limit Heywood + Lake Bonney WF + Canunda WF <= 50 MW for system strength requirement when SA is at risk of separation.	14	561% (111.83)	278% (74.52)

2.9.1 Further Investigation

The following constraint equation(s) have been investigated:

Q_NIL_STRGTH_MEWF: Investigated and no improvement can be made to the constraint equation at this stage.

Q_STR_43239_MEWF_26D: Investigated and no improvement can be made to the constraint equation at this stage.

Q_NIL_STRGTH_HAUSF: Investigated and no improvement can be made to the constraint equation at this stage.

Q_STR_43239_SMSF_38: Investigated and no improvement can be made to the constraint equation at this stage.

Q_STR_43239_HASF_40: Investigated and no improvement can be made to the constraint equation at this stage.

V_MLMO_VS_LB_CAN_50: Investigated and no improvement can be made to the constraint equation at this stage.

N^N_CHLS_1: Investigated and no improvement can be made to the constraint equation at this stage.

V_VS_LB_CAN_50: Investigated and no improvement can be made to the constraint equation at this stage.

3. Generator / Transmission Changes

One of the main drivers for changes to constraint equations is from power system change, whether this is the addition or removal of plant (either generation or transmission). The following table details changes that occurred in for November 2019.

Table 7 Generator and transmission changes

Project	Date	Region	Notes
Nil	Nil	Nil	Nil

3.1 Constraint Equation Changes

The following pie chart indicates the regional location of constraint equation changes. For details on individual constraint equation changes refer to the Weekly Constraint Library Changes Report² or the constraint equations in the MMS Data Model.³

² AEMO. *NEM Weekly Constraint Library Changes Report*. Available at: <u>http://www.nemweb.com.au/REPORTS/CURRENT/Weekly_Constraint_Reports/</u>

³ AEMO. MMS Data Model. Available at: <u>http://www.aemo.com.au/Electricity/IT-Systems/NEM</u>

Figure 5 Constraint equation changes

The following graph compares the constraint equation changes for the current year versus the previous two years. The current year is categorised by region.

Figure 6 Constraint equation changes per month compared to previous two years