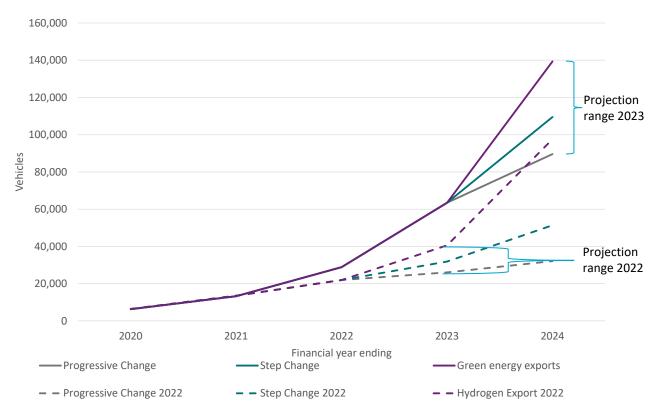


Electric vehicle projections 2023

October 2023


Paul Graham

Key updates relative to 2022

Item	Impact
Population and GDP projections	Slightly lower overall
Historical EV sales	Faster than expected. Short term forecast range adjusted to recognise higher potential growth
Historical road transport statistics	 Vehicle sales are steady Vehicle passenger travel is persistently lower – WFH, telepresence for business. More confidence in predicting vehicles growth which will be higher.
Working through implications of potential fuel efficiency standards	New policy makes sales targets more important in the projections method
Working through feedback on profiles	More explicit charger assumptions and subsequent adjustments to profile shares

Short term sales projection

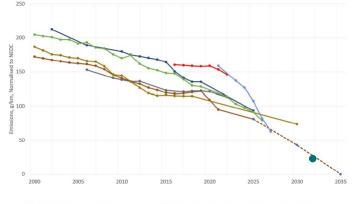
2023-24 forecasted range is 90,000 to 140,000.

September quarter annualised rate is around 118,000

2021-22 was uncertain in previous projection but base year 2022-23 is now firm historical due to change in method at FCAI statistics

Fuel efficiency standards

- Australian fuel standards to be clarified by end 2023
- US proposal could lead to 60% EV sales by 2030 in US
- EU standards similar and define an ICE ban 2035
- Australia is coming from a higher vehicle emissions starting point
- State targets are for 50% EV sales share by 2030
- Propose +/-15% range for now. Narrow to +/-10% when more policy detail is known


	Progressive Change	Step Change	Green Energy Exports
2030 outcome	35% new vehicle sales	50% new vehicle sales	65% new vehicle sales

US EPA Table 80—Fleet BEV Penetration Rates, by Body Style, Under the

	2027 (%)	2028 (%)	2029 (%)	2030 (%)	2031 (%)	2032
Sedans	45	53	61	69	73	78
Crossovers/SUVs	38	46	56	59	61	62
Pickups	11	23	37	45	55	68
Total	36	45	55	60	63	67

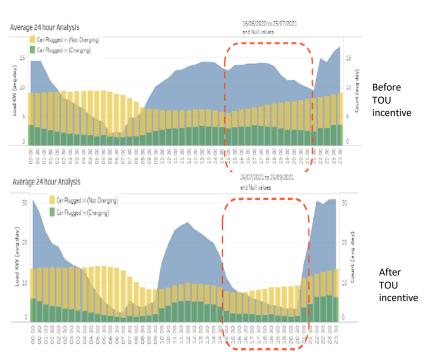
Table 81—Fleet BEV Penetration Rates, by Body Style, Under the No

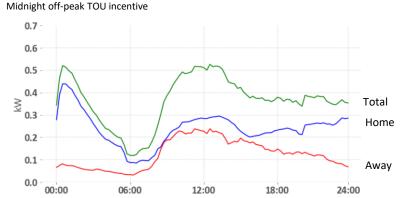
	2027 (%)	2028 (%)	2029 (%)	2030 (%)	2031 (%)	2032 (%)
Sedans	39	41	45	46	44	43
Crossovers/SUVs	26	32	37	40	39	39
Pickups	7	16	24	29	31	33
Total	27	32	37	40	40	39

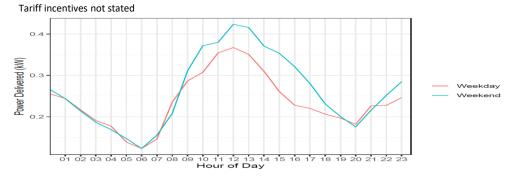
Current US EPA proposal is 45g/km by 2032

Chargers

	AC/DC	Power	Effort required	Recharge time per empty vehicle
Level 1	AC	2.4 to 3.6kW	Standard power point	Days
Level 2	AC	7.2 to 22kW	Electrician installs dedicated power point and extra phases if necessary	Overnight
Fast (also level 3 and 4)	DC	25 to 100s of kW	Above plus large distribution connection	Minutes to an hour




Charger shares: current and 2050


- Trials indicate Level 1 charging is currently common although trial results differ
- Assumed that there will need to be more workplace and public charging to accommodate households with difficult at-home charging circumstances
- Level 1 is too slow for recovering charge after a long trip even if home charging is convenient – additional driver of Level 2 and public fast over time
- These changes will occur sooner the faster EV uptake across the scenarios

Vehicle type	Charger type	Current (estimated)	Progressive change	Step change	Green energy exports
Passenger	Home - L1	68%	46%	41%	36%
	Home - L2	23%	31%	27%	24%
	Work - L2	5%	10%	15%	20%
	Public - L2	1%	4%	5%	6%
	Public - Fast	4%	10%	12%	14%
LCV	Home - L1	38%	17%	14%	12%
	Home - L2	13%	25%	22%	18%
	Work - L2	48%	55%	60%	65%
	Public - Fast	2%	3%	4%	5%
Truck/bus	Work - L2	29%	24%	19%	14%
	Work - Fast	69%	73%	77%	81%
	Public - Fast	2%	3%	4%	5%

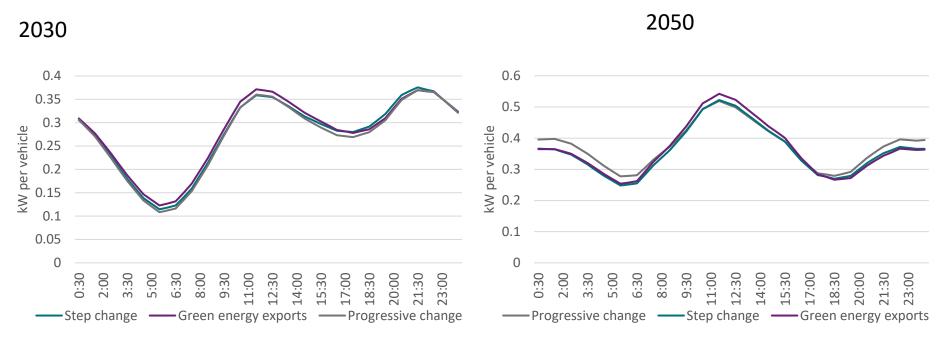
Trial profiles

Key learnings from trials:

- Tariffs play a major role in reducing evening peak period charging.
- Midday charging is a feature and reflects rooftop solar and public charging

AER forecast TOU take up will increase

Linking charger to charging profiles

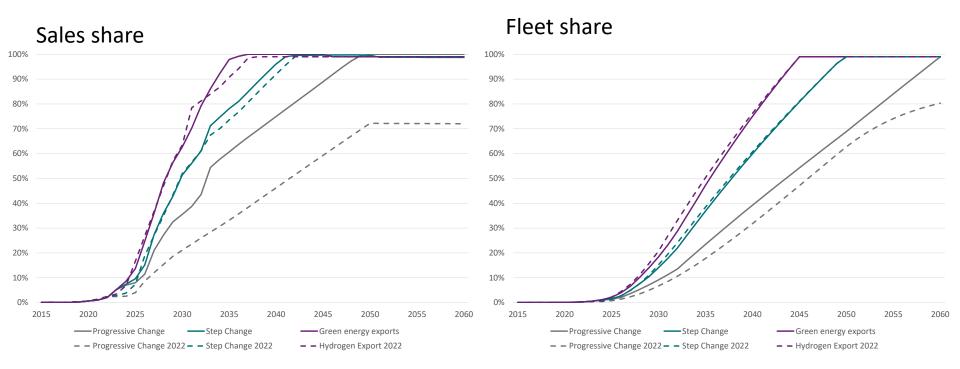

Tariffs Opportunities Charger **Profile types** / constraints Passenger - Unscheduled home charging, flat tariff Flat tariff Workplace, Level 1 Passenger - TOU tariff with no day incentives other than use city or shop common of home solar but TOU parking, Level 2 Passenger - TOU tariff including day charging incentives (an home solar, growing Households emerging tariff type) in-car timer Fast Passenger - Public L2 and fast charge Fast communication, Bi-Dynamic plugged in, charge to Vehicle to X directional price spare, market charger arrangements LCV, trucks & buses - Overnight due to day use of vehicle Business Workplace, city TOU is Level 2 LCV, trucks & buses - Daytime oriented allowing for vehicles or shop common parked at workplace parking, high Fast LCV, trucks & buses - public fast charge daytime vehicle duty cycle

Charge profile shares: current and 2050

	Current	Progressive change	Step change	Green energy exports
Passenger - Unscheduled home charging, flat tariff	70%	49%	44%	38%
Passenger - TOU tariff with no day incentives other than use of home solar	23%	4%	3%	2%
Passenger - Vehicle to home/grid (dynamic system-controlled charging)	0%	18%	24%	30%
Passenger - Public L2 and fast charge	5%	14%	17%	20%
Passenger - TOU tariff including day charging incentives	1%	16%	13%	9%
LCV - Overnight due to day use of vehicle	80%	73%	72%	70%
LCV - Daytime oriented allowing for vehicles parked at workplace	18%	24%	24%	25%
LCV - public fast charge	2%	3%	4%	5%
Trucks & buses - Overnight due to day use of vehicle	88%	80%	78%	76%
Trucks & buses - Daytime oriented allowing for vehicles parked at workplace	10%	17%	18%	19%
Trucks & buses - public fast charge	2%	3%	4%	5%

To 2030	2030 to 2050
Û	Û
仓	Û
\Rightarrow	仓
仓	仓
仓	仓
仓	Û
仓	仓
矿	①
仓	Û
仓	介
仓	介

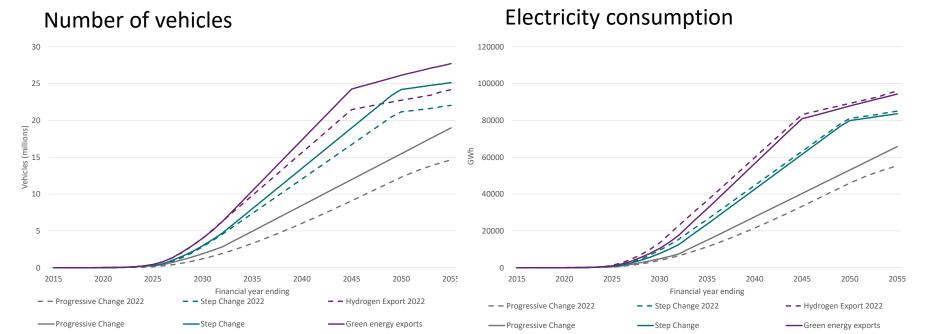
Outcome of charging assumptions: all vehicles


Increase in daytime charging over time

Decrease in peak period charging as TOU and then dynamic control adoption increase

Charge per vehicle increases over time as trucks and buses electrify

Preliminary results: sales and fleet share



Progressive change 2022 sales rate is no longer plausible given recent strong growth and likely introduction of fuel efficiency standard. Volatility before 2030 reflects approach of cost parity in 2035

Preliminary results: number and consumption

NEM

Knee in 2045 and 2050 reflects end of period of accelerated scrapping of ICEs. Higher number of vehicles compared to 2022 is offset by lower kms travelled per vehicle such that consumption changes relative to 2022 are small.

Thank you

Energy

Paul Graham Chief Economist Energy

+61 2 4960 6061 paul.graham@csiro.au

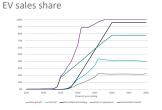
Method appendix for information

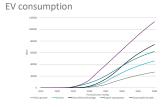
Overview of CSIRO's EV model

Inputs

Inputs and
Assumptions
e.g. Historical
EV sales, fuel
efficiency,
market changes,
scenario
settings.

Short-term Model


Long-term Model


(Consumer Adoption & Transport demand Model)

- 1) Uptake and Sales of EVs
- 2) Proportion of Vehicles
- 3) Operational forecasts

4) EV Consumption forecasts

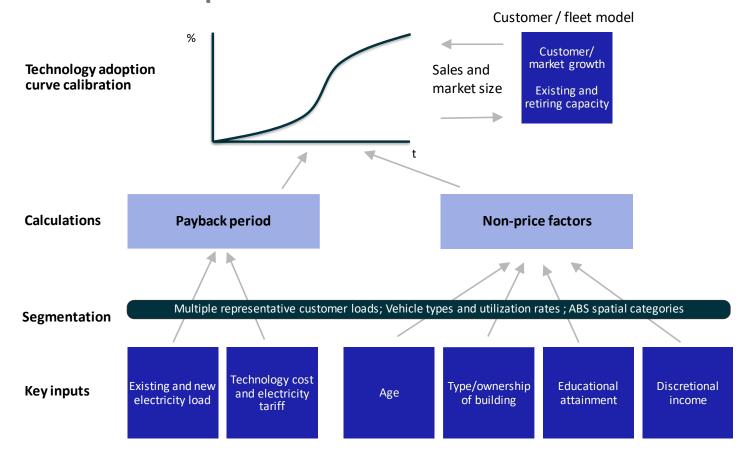
Outputs

Short and long term models

Next 12 months

Regression analysis

2024-25 to majority EV sales


Consumer technology adoption model Majority EV sales to end of projection

Market retirement model

Transport demand model

Consumer adoption model

Market retirement model

Majority EV sales achieved Industry servicing two drivetrain types No significant change to ICE services 10 years following EV majority sales ICE refuelling and maintenance services in ICE sales negligible irreversible decline Road fleet adjustments Voluntary early retirement of ICE vehicles Faster than normal fleet replacement with EVs

Transport demand model

Macroeconomic drivers

Passenger – population growth

Freight – GDP growth

Passenger – active, road, rail, air

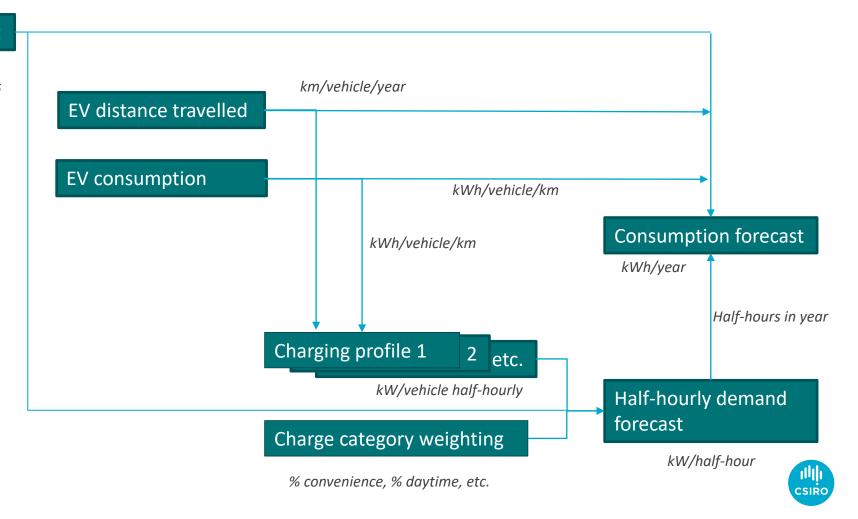
Freight – road, rail, air, shipping

Additional sector calculations

Road: Cost of travel elasticity and changes in passengers/tonnes per vehicle and trip length

Non-road: Future trends on fuel efficiency and fuel shares

Total EV consumption calculations


Key outputs:

- Vehicle sales and subsequent number of vehicles by mode and type (monthly)
- EV electricity consumption (half hour to monthly)
- Monthly electricity consumption = Vehicles × km/month × kWh/km
- Half-hourly electricity consumption = ChargeProfileShare × ChargeProfiles × Vehicles

EV fleet

Number of vehicles

