
3 April, 2001 Version No: 1.0

FINAL

National Electricity Market
Management Company Limited
ABN 94 072 010 327

Prepared by: Michael Leditschke
Version No: 1.0
FINAL

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 2

FINAL

1. INTRODUCTION.. 5
1.1 BACKGROUND... 5
1.2 APPROACHES TO STANDARD DEVELOPMENT.. 5
1.3 DOCUMENT PURPOSE ... 5
1.4 TARGET AUDIENCE .. 5
1.5 REFERENCE DOCUMENTATION .. 6
1.6 FORMATTING CONVENTIONS.. 6
1.7 TRANSACTION TERMINOLOGY.. 6
1.8 DOCUMENT STRUCTURE... 7
1.9 REVISION HISTORY .. 8

2. GENERAL.. 10
2.1 DTDS VS SCHEMAS... 10
2.2 USE OF SCHEMA VALIDATING PARSERS... 10
2.3 ELEMENTS VS ATTRIBUTES .. 10
2.4 USE OF ENUMERATIONS ... 11
2.5 CODES VS DESCRIPTIONS .. 12
2.6 USE OF LINE TERMINATORS ... 12

3. VERSION CONTROL... 13
3.1 XML AND VERSIONING ... 13

3.1.1 Guiding Principles... 13
3.1.2 What Should Be Versioned?... 13

3.2 VERSIONING AND XML NAMESPACES.. 14
3.2.1 Namespace Granularity.. 15
3.2.2 Namespaces Within aseXML.. 16

3.3 VERSIONING AND SCHEMAS ... 16
3.3.1 Schemas Within aseXML.. 17

3.4 RELEASE IDENTIFIERS... 17
3.5 VERSIONING OF TRANSACTIONS ... 18
3.6 VERSIONING AND COMMON ITEMS .. 19
3.7 THE BIG PICTURE – INTRODUCING A CHANGE TO ASEXML 20

3.7.1 Scenario ... 20
3.7.2 Sequence of Events ... 22

4. NAMESPACES .. 24
4.1 ASEXML NAMESPACE FORMAT .. 24
4.2 DEFAULT NAMESPACES .. 24
4.3 NAMESPACE PREFIXES ... 25

5. SCHEMA ORGANISATION ... 26
5.1 SCHEMALOCATION URLS... 26
5.2 TRANSACTION FILES.. 27
5.3 SCHEMA INCLUSION... 28
5.4 COMMON SCHEMAS ... 28
5.5 ELEMENTS/TYPES .. 29
5.6 TRANSACTION ELEMENTS... 29
5.7 ATTRIBUTES.. 30

6. SCHEMA FEATURES.. 31

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 3

FINAL

6.1 XML PROLOG... 31
6.2 ANONYMOUS VS NAMED TYPES AND DATA DICTIONARIES 31
6.3 ANNOTATIONS .. 31
6.4 SIMPLE TYPES... 32
6.5 HANDLING FUEL SPECIFIC VARIATIONS .. 32
6.6 ASEXML ATTRIBUTES.. 32

6.6.1 DEFAULT VALUES.. 33
6.6.2 ID AND IDREF ... 33

6.7 ELEMENT AND ATTRIBUTE QUALIFICATION .. 33
7. INSTANCE DOCUMENTS ... 34

7.1 XML PROLOG... 34
7.2 DEFAULT NAMESPACES .. 34
7.3 SCHEMALOCATION ATTRIBUTE .. 34
7.4 DECLARING NAMESPACES FROM THE XML STANDARDS.............................. 34

8. TRANSPORT, ENVELOPE OR TRANSACTION ... 35
8.1 TRANSPORT .. 35
8.2 ENVELOPE... 37
8.3 TRANSACTION... 37

9. ENVELOPE.. 38
9.1 INTRODUCTION... 38
9.2 <HEADER> SUB-ELEMENT ... 38

9.2.1 <From>, <To> (Mandatory) .. 39
9.2.2 <MessageID> (Mandatory) ... 39
9.2.3 <MessageDate> (Mandatory) ... 39
9.2.4 <TransactionGroup> (Mandatory)... 39
9.2.5 <Priority> (Optional) ... 39
9.2.6 <SecurityContext> (Optional) ... 40

9.3 <TRANSACTIONS> SUB-ELEMENT... 40
9.3.1 transactionID (Mandatory) .. 40
9.3.2 transactionDate (Mandatory) .. 40
9.3.3 initiatingTransactionID (Optional).. 40

9.4 FUTURE ENVELOPE MODIFICATIONS... 41
9.5 A SAMPLE ASEXML MESSAGE.. 42

10. ACKNOWLEDGEMENT MODEL ... 43
10.1 INTRODUCTION ... 43
10.2 MESSAGE ACKNOWLEDGEMENT .. 43

10.2.1 initatingMessageID (Mandatory) ... 44
10.2.2 requestID (Mandatory).. 44
10.2.3 requestDate (Mandatory).. 44
10.2.4 status (Mandatory).. 44

10.3 TRANSACTION ACKNOWLEDGEMENT .. 44
10.3.1 initatingTransactionID (Mandatory)... 44
10.3.2 requestID (Mandatory).. 45
10.3.3 requestDate (Mandatory).. 45
10.3.4 status (Mandatory).. 45

10.4 EXCHANGING ACKNOWLEDGEMENTS.. 46
10.5 A SAMPLE ASEXML TRANSACTION EXCHANGE.. 47

11. ERROR REPORTING AND THE <EVENT> ELEMENT... 48

11.1 CLASS ATTRIBUTE (MANDATORY) .. 48
11.2 SEVERITY ATTRIBUTE (MANDATORY).. 49

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 4

FINAL

11.3 <CODE> SUB-ELEMENT (MANDATORY) ... 49
11.4 <KEYINFO> SUB-ELEMENT (OPTIONAL)... 49
11.5 <CONTEXT> SUB-ELEMENT (OPTIONAL).. 49
11.6 <EXPLANATION> SUB-ELEMENT (OPTIONAL) ... 50
11.7 <SUPPORTEDVERSIONS> SUB-ELEMENT (OPTIONAL) .. 50
11.8 RESERVED EVENT CODES.. 51

12. SUPPORT FOR CSV FORMAT DATA... 52

13. SAMPLE SCHEMAS AND INSTANCE DOCUMENT EXAMPLES........................... 53

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 5

FINAL

1. INTRODUCTION

1.1 BACKGROUND

The combined Gas and Electricity IT Architecture Working Group of Australia
has adopted a number of recommendations in the area of business-to-
business electronic data interchange (see document references in section
1.5). The thrust of this work is an acceptance of XML to describe business
transactions and the Internet to exchange them.

The working group has commissioned the development of this document in
order to further the standardisation of the transactions required within the
Australian energy market.

1.2 APPROACHES TO STANDARD DEVELOPMENT

There are various approaches that may be adopted in the development of a
standard.

Centralised approaches typically involve the formulation of a representative
committee that drafts the specification, followed by its implementation by the
participants. The aim is for up-front consensus to avoid future interoperability
problems, but the process often suffers from bureaucratic delays.

De-centralised approaches allow individuals to develop working prototypes
and have these ratified by an authorising committee. A high degree of
parallelism may be achieved, but broader acceptance is contingent on the
standard meeting the requirements of all involved.

Given the tight timeframes established for full retail contestability, a de-
centralised model to standards development has been adopted. The aim is to
harness the collective intellectual property of the industry with individuals
focussing on those areas where they perceive the most benefit.

1.3 DOCUMENT PURPOSE

The purpose of this document is thus to establish sufficient infrastructure to
allow the independent development of portions of the specification and their
combination in an efficient manner. Given the process used, this document will
of necessity evolve over time and should be considered a “work in progress”.

1.4 TARGET AUDIENCE

This document is designed for technical and software development staff
responsible for systems implementing the aseXML standard.

It is assumed that readers of this document are familiar with the standards
below.

1. Extensible Markup Language (XML) 1.0 (www.w3.org/TR/REC-xml)

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 6

FINAL

2. Namespaces in XML (www.w3.org/TR/REC-xml-names)

3. XML Schema Part 1: Structures (www.w3.org/TR/xmlschema-1)

4. XML Schema Part 2: Datatypes (www.w3.org/TR/xmlschema-2)

5. XSL Transformations (XSLT) Version 1.0 (www.w3.org/TR/xslt)

1.5 REFERENCE DOCUMENTATION

The following documents may be of use for background information.

1. Combined Gas & Electricity IT Working Group White Paper

2. XML Schemas: Best Practices
(http://www.xfront.com/BestPracticesHomepage.html)

1.6 FORMATTING CONVENTIONS

This paragraph demonstrates the appearance within this document of
any text defining a requirement for conformance to aseXML.

Any text representing the literal value used for elements or attributes will be
shown in fixed pitch font, e.g. <TransactionGroup>.

1.7 TRANSACTION TERMINOLOGY

The word “transaction” is commonly used in a wide variety of contexts within
the Information Technology Industry.

For the purposes of this document, a transaction is a one-way exchange of
information between business process level entities.

A transaction exchange, as the name implies, is the exchange of one or more
transactions. It consists of a request transaction, followed by zero or more
response transactions. Typically transaction exchanges follow a request/single
response model.

A business process is defined by a set of transaction exchanges.

An example of the use of this terminology is given below, with this example
used as the basis for other examples in this document.

Business Process – NMI Data Access

Transaction Exchanges – NMI Discovery, NMI Standing Data

Transactions for NMI Discovery – NMI Discovery Request, NMI Discovery
Response

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 7

FINAL

1.8 DOCUMENT STRUCTURE

Chapter Area Covered

2 General requirements needed prior to a detailed discussion of XML
Schema organisation

3 Version control within aseXML. It is necessary to define the
versioning mechanism to be used as it impacts on naming
standards

4 Namespace use within aseXML

5 Source file management and element naming for aseXML
Schemas

6 Use of XML Schema features within aseXML

7 Format requirements for instances of aseXML documents

8 Distinction between XML defining transactions and XML needed to
carry information about the process and its transactions

9 XML Envelope to be used within aseXML

10 Transaction Exchange Model for aseXML, including
acknowledgement mechanisms

11 Error and Event Handling

12 Support for CSV format data

13 How to obtain schemas and examples for aseXML

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 8

FINAL

1.9 REVISION HISTORY

Version Date Who Comments

0.1 25/09/2000 Michael Leditschke Initial draft

0.2 02/10/2000 Michael Leditschke Rework with single namespace

0.3 04/10/2000 Michael Leditschke Simplify version identifiers

Add special text format for
requirements

0.4

0.5

09/10/2000

31/10/2000

Michael Leditschke

Michael Leditschke

Add additional element naming
guidelines

Final review before release to IT WG

Note: Diagrams are still to be
completed.

0.6 09/10/2000 Michael Leditschke Add diagrams

Revised text of chapter 8

0.7 19/12/2000 Michael Leditschke Schemas now based on 24th October
2000 candidate recommendation

Clarify the use of the “ref” construct for
global elements

Remove restriction on the encoding
scheme used. All implementations
must support UTF-8 to comply with the
Extensible Markup Language (XML)
1.0 specification, and ASCII is a subset
of UTF-8.

Sample schemas and instance
documents no longer contained in this
document. Reference to the
appropriate URLs is provided

Added caveat to codes vs. descriptions
allowing no description where
code/description mappings known to
businesses

Added chapter 10 on the aseXML
Acknowledgement Model

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 9

FINAL

Version Date Who Comments

06/03/2001 Updated chapter 9 on the aseXML
Envelope to reflect envelope used for
MSATS – remove use of the term
“Interim” in the header

Added section 1.7 on transaction
terminology in Introduction

Expanded section 5.4 on common
schemas

Added section 6.2 on use of
anonymous types

Changed document title to avoid
Standards Australia trademarks

Expanded section 6.3 on use of
annotations in line with desire to
automatically generate data
dictionaries from the schemas.
Removed chapter on documentation.

Added chapter 11 to more fully cover
error reporting

0.8 16/03/2001 Michael Leditschke Allow message and transaction level
acknowledgements in a single
message

Namespace usage within schemas
now consistent with reference 2.

0.9 20/03/2001 Michael Leditschke Rename <Location> element of
<Event> to <KeyInfo> and change
description

Add text indicating what severity levels
should accompany acknowledgements

1.0 23/03/2001 Michael Leditschke Reformat as FINAL

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 10

FINAL

2. GENERAL

2.1 DTDs VS SCHEMAS

The data dictionary and transactions will be expressed in the language
of XML schemas rather than DTDs.

This follows the trend towards the use of schemas in much of the work
currently being undertaken on the Internet.

Schemas will use the October 24, 2000 candidate recommendation of the
schema specification until such time of the specification reaches
recommendation status.

2.2 USE OF SCHEMA VALIDATING PARSERS

A schema validating parser will process incoming XML documents in
order to ensure full compliance to the aseXML standard.

This parsing should occur as early as possible, preferably prior to application
processing, in order to ensure the timeliest rejection of invalid transactions.

Use of such a parser may also remove some of the validation burden from the
receiving application and assist in assuring consistent industry wide validation.

2.3 ELEMENTS VS ATTRIBUTES

There have been many debates within the XML community with regard to the
representation of data items in elements as opposed to attributes. Many XML
standards such as XSL provide equivalent functionality for both and often the
choice is a matter of philosophical preference.

The main differences between attributes and elements in this context are that

• Attributes can only be of simple types, whereas elements may be of
complex types.

Complex data items such as addresses are thus not appropriate
candidates for attributes.

• Attributes may have default values provided by the schema.

An instance document of itself does not contain all the information that an
application processing the instance document via a schema might receive.
If considered detrimental, making all attributes mandatory may negate this
feature.

• Versioning of attributes is difficult to achieve

By its nature, it is difficult to attach versioning to an attribute, whereas an
element can easily carry a version attribute. In addition, mechanisms such

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 11

FINAL

as the <choice> tag in schemas are only available for elements and not
for attributes.

Approaches to deciding what information belongs where cover a broad range
including the following:

• Use elements for content and attributes for metadata about the content.

An example might be to use an element for a bid structure and an attribute
of this element for the bid date.

• Use attributes where there is no likelihood of further data refinement
otherwise use elements.

• Where there is no other deciding factor, use an attribute rather than an
element because of its more concise syntax.

Whilst it is recognised that no particular approach is more “correct” than any
other, one approach needs to be selected to provide consistency across the
transactions within aseXML. The rules below will thus be used to determine
when to use elements and attributes.

• Use elements for content and attributes for metadata about the
content.

• If there is any chance of further data refinement, use an element.

• If there is the possibility that multiple versions may need to co-exist,
use an element.

• If in doubt, use an element.

2.4 USE OF ENUMERATIONS

One feature of XML Schemas, called an enumeration, limits the contents of an
element or attribute to a finite set of values. Use of enumerations in aseXML
schemas is desirable to provide global documentation of this set of values in
an enforceable manner.

It is recognised, however, that where the possible set of values is changing
frequently, enumerations may cause problems in areas such as versioning. In
addition, determining the valid set of values may more readily be handled in
application code, particularly where processing logic depends on the value.
The disadvantage of application-based validation is that it must be
implemented by all participants rather than once in the schema.

Schema designers are thus encouraged to use enumerations provided the
values are stable. As a general rule of thumb, if the set of valid values
changes as a result of an administrative function, an enumeration should NOT
be used, for example registration of a new participant. If the set of valid values
changes as a result of industry-wide consultation, however, enumerations may
be considered, for example addition of new tranches.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 12

FINAL

2.5 CODES VS DESCRIPTIONS

Where codes or alphanumeric identifiers have an equivalent textual value, it is
desirable that both the mnemonic and its equivalent description be carried by
a transaction.

This will enhance human readability of the transaction as well as information
display and validation. This approach is particularly important where codes are
specific to a particular participant.

Where mechanisms are in place for the exchange between businesses of the
code/description mapping information, use of descriptions within transactions
should be considered optional.

When included, a description will be carried either as a separate sub-
element or as an attribute of the element. By preference, the sub-element
<Description> or the attribute “description” should be used.

An example is given below.

<DistributionLossFactor>

<Code>QLD23</Code>

<Description>Brisbane Metro</Description>

</DistributionLossFactor>

or

<DistributionLossFactor code=”QLD23”

description=Brisbane Metro”/>

In line with section 2.4, enumeration of the possible values for codes and
equivalent descriptions should be included in the schema where
appropriate.

2.6 USE OF LINE TERMINATORS

Schemas and instance documents should incorporate line terminators to
assist in human readability, subject to issues related to data volume.

The start and end tags of elements containing sub-elements should stand
alone on a line, whilst the tags of elements not containing sub-elements may
reside on a single line.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 13

FINAL

3. VERSION CONTROL

3.1 XML AND VERSIONING

3.1.1 Guiding Principles
Ask ten XML practitioners how to handle the issues associated with XML
versioning and you will undoubtedly receive ten divergent answers.
Versioning is complicated by issues such available XML tools and
programming techniques, version change rate, application development
lifecycles and size of user base.

In selecting a versioning approach for aseXML, the author has attempted
to pick the “middle road” that ensures possible changes in versioning
strategy are not precluded, whilst not unduly complicating the generation
and processing of transactions. There is some overlap in the techniques
used, which will most likely disappear over time as a result of experience,
version support in transport frameworks, and new standards addressing
the issue of versioning XML.

The principles below have been used to guide the formulation of the
approach.

• Minimise the amount of version information within instance
documents.

This ensures instance documents are simple to generate and read.

• Add version information in a way such that it can be removed/ignored
in the future.

This allows a smooth migration to standardised versioning techniques
in the future without, where possible, invalidating existing instance
documents.

• Accommodate the need for applications to make logic decisions on
the basis of version.

Any version mechanism should provide version information to
applications in a manner that is simple to handle programmatically.

3.1.2 What Should Be Versioned?
Given the de-centralised, incremental design process being used for
aseXML, it is vital that robust mechanisms exist to allow participants to
track and implement changes to the standard. Such mechanisms should
also be efficient in terms of likely application architectures.

There are three areas where changes to aseXML are likely to occur;

• in common data items, that, by definition, are used by multiple
transactions.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 14

FINAL

Once defined, common data items are unlikely to change, with the
exception of enumerations. Given the discussion in section 2.4, such
changes will be infrequent.

When changes to common items do occur, however, multiple
transactions will be affected. In turn, application processing may be
affected, depending on how the nature of the data involved has
changed and what IT architecture is involved.

For instance, addition of values to an enumeration may require code
change when the code value triggers application logic, but may not
require code change if the value is simply stored for later display.

As another example, an increase in the length of a data item may
cause the need for a database to be resized, but may not cause a
problem if mapping of the XML transaction to an internal structure
occurs, and the internal structure has the capacity to handle the
expansion.

• in the transactions, which combine common and transaction specific
data items.

Transactions are considered the area where most change will occur,
given the distributed nature of their specification (see section 1.2).
Changes in transactions are also seen as the most likely driver for
changes to application processing.

• in the envelope, which ensures delivery of the transactions (see
chapter 9).

The envelope is only likely to change with the move from the interim
transport solution to the final aseXML framework. This change should
not affect code specific to particular transactions, but will require
changes to the code used to route transactions to the appropriate
application.

From the above discussion, the versioning mechanism selected must
provide the necessary hooks to allow application code to detect and
handle variations in the common data items, transactions and envelope in
a way that does not mandate or preclude a particular application
framework.

3.2 VERSIONING AND XML NAMESPACES

The “Namespaces in XML” specification provides a starting point for
considering versioning issues. Quoting from the specification,

“Software modules need to be able to recognise the tags and attributes which
they are designed to process, even in the face of “collisions” occurring when
markup is intended for some other software package using the same element
type or attribute name.”

“An XML namespace is a collection of names, identified by a URI reference,
[RFC2396], which are used in XML documents as element types and attribute
names”.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 15

FINAL

Some XML standards such as Scalar Vector Graphics (Appendix F.3) and the
Signature Syntax and Processing have specified the use of multiple
namespaces to detect different versions of the specification.

Others, such as XSL Transformations attach a version attribute to top level
elements and define behaviour necessary to process XML documents that use
different versions and mechanisms to add extensions to the base standard. In
this manner, they avoid the need to change the namespace used.

The jury is thus out as to what the XML community think is the best way to
incorporate namespaces in a versioning strategy, if at all.

3.2.1 Namespace Granularity
In formulating a standard such as aseXML, one of the design decisions to
be made is how many namespaces to use. The quotes above could be
interpreted to mean that different versions of an element belong to
different namespaces. Others argue for the use of namespaces in a
broader sense, for instance a namespace for everything within aseXML
regardless of version.

The following table summarises the options for aseXML and their
advantages/disadvantages.

Approach Granularity Advantages Disadvantages

Single
namespace

Coarse Simple

No need to use
namespace prefixes in
instance documents via
use of default
namespace

No granularity

Alternate methods to track
transaction/common
element variations need to
be considered

Namespace
per transaction

Namespace
for common
items

High Fine version control • Large number of
namespaces

• Complex management
at application level

• Use of multiple schemas
complicates schema
design and instance
documents

Namespace
per transaction
set

Medium • Parallels likely
participant support
of portions of the
specification

• Reasonable
granularity

• Complex management
at application level

• Use of multiple schemas
complicates schema
design and instance
documents

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 16

FINAL

The issue is largely a trade-off between simplicity and insulation from
unnecessary change. Elements in different namespaces are insulated to
some extent from changes in other namespaces, but the penalty incurred
is the need to manage versions of multiple namespaces.

3.2.2 Namespaces Within aseXML
aseXML will use a single namespace to cover all elements within it,
but will incorporate version information in the namespace,
effectively using a new namespace each time the specification is
changed.

Instance documents will qualify their top-level element with the
aseXML namespace corresponding to the version of the contained
transaction(s).

The reasons below were used to arrive at this decision.

• Use of one namespace is in line with the guiding principles of section
3.1.1, that is simplicity of schemas and simplicity of instance
documents.

• Some schema parsers (see section 3.3) may indirectly use
namespaces as a way of locating the corresponding schemas, and
hence information may be needed in the namespace to differentiate
between versions

• The version information may easily be frozen should the need
disappear for its presence in the namespace.

• Given the large number of participants, and the varying timing of their
IT development cycles, use of multiple namespaces was seen as
adding an unnecessary layer of dependencies to the challenge of
progressing version changes to the aseXML standard.

It is recognised that this approach will need alternate mechanisms to
handle changes in transactions and common items in order to meet the
third guiding principle of simple application version management.

3.3 VERSIONING AND SCHEMAS

The “XML Schema” specification builds on the “Namespaces in XML”
specification by providing a mechanism to define the elements and attributes
belonging to a particular namespace. The particular namespace is referred to
as the “target namespace”. To validate an element/attribute, a schema is
needed whose target namespace matches the namespace of the
element/attribute.

Thus, the question naturally arises “Given an element of a particular
namespace, how do I obtain the corresponding schema?” Much of the debate
has centred on the use of a URI to identify a namespace. Because one form of
a URI is a URL, one approach is to use a URL for a namespace and provide
the corresponding schema via the URL. Many have argued against this,
indeed the “Namespaces in XML” specification includes the sentence

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 17

FINAL

“It is not a goal that it (a namespace name) be directly useable for retrieval of
a schema…”

The designers of the schema specification did provide a partial answer to the
question by defining a “schemaLocation” attribute that can be added to an
element as a way for its instance document originator to provide assistance as
to what the intended schema should be. The value of this attribute may be one
or more namespace/URI pairs. It is the usual convention for the URIs to take
the form of URL’s by which the schema for the namespace may be retrieved.

The schemaLocation attribute is optional and even if present may be ignored.
Indeed, the specification goes on in “XML Schema Part 1: Structures (Section
4.3.2)” to allow schema processors to pick and choose from a variety of ways
to retrieve schemas based on either the namespace or the schemaLocation,
from either a local cache or the Internet.

3.3.1 Schemas Within aseXML
Given that different products may use different strategies to obtain
schemas, it is not possible to be prescriptive in this standard. In order to
facilitate different approaches, however, the rules below will be used.

The URIs used in schemaLocation attributes will be URLs by which
the schema may be obtained.

Given knowledge of the base portion of a schemaLocation URL, it
will be possible to automatically generate the schemaLocation
attribute corresponding to a namespace.

The root element of all instance documents will provide a
schemaLocation attribute for its corresponding aseXML namespace.

At first glance it may seem that dynamic fetching of schemas will not
occur, since application changes must precede presentation of
associated transactions for any meaningful work to be done. However, as
discussed in section 3.7, a participant might receive a transaction for a
version of aseXML not yet supported within their systems. In this case,
there is still an obligation to parse the transaction as per section 2.2, in
order to formulate an appropriate response.

3.4 RELEASE IDENTIFIERS

In order to further define the versioning scheme for aseXML, it is necessary to
document how different versions of aseXML will be identified.

To this end, a release identifier will identify each version of aseXML. A
release identifier starts with a lowercase “r” and is followed by a whole
number, referred to as the release number.

Such an identifier is referred to as a production release, an example of which
is given below.

r100

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 18

FINAL

In order to develop new production releases, a development extension
may be appended to the affected production release, being separated
from it by an underscore character. Such an identifier will be referred to
as a development release.

The first letter of the development extension will indicate the particular
thread of development. It will be followed by a sequence number to allow
identification of the stage of development within the thread.

An example of a development release is given below.

r100_a5

Use of development releases is highlighted in the section 3.7.

Whenever they appear, release identifiers will be separated from other text by
an underscore character.

3.5 VERSIONING OF TRANSACTIONS

It is recognised that by adopting a single namespace, tracking of changes in
individual transactions by application code becomes somewhat of a moving
target. The current production release will most likely be different from that
used to test the application code, and the ability to respond to arbitrary
production releases of the standard will be difficult to support.

Within aseXML, a number of “release points” will thus be assigned to
each transaction. A release point indicates the production release at
which the contents of the transaction, and hence the associated
application semantics, changed.

Associated with each transaction will be a version attribute indicating
the release point to which the transaction conforms.

When an application generates an instance document containing a
particular release point of a transaction, it should associate it with the
namespace corresponding with the release point.

This approach has several features.

• Application code for a given transaction need only know how to generate
and process a limited set of production releases. Code should be
structured to use the version attribute to control variations in processing.

• Code written to generate a particular version of a transaction will not be
invalidated when the version identifier of the aseXML namespace changes
as a result of modifications in some other transaction.

• The presence of the version attribute allows future definition of how
applications might process versions later than those supported, perhaps
via a mechanism similar to “Forwards Compatible Processing” in the XSL
Transformation specification (see section 1.4).

• Given that a query mechanism is available, an application having a given
version of a transaction rejected (presumably because of lack of support

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 19

FINAL

within the recipient) may determine what versions are common between
the two participants and use the highest version available.

• Regardless of the version of the namespace, examination of its schema
will quickly reveal the release point of each transaction, since the definition
of the transaction will be carried forward with each production version.

Whilst at first glance appearing somewhat complicated, the approach above
will allow participants to choose what subset of the release points of each
transaction they implement, and does not restrict those participants who wish
to aggressively advance their IT infrastructure. Figure 1 provides an example
of how changes in transaction T1 are accommodated by the aseXML schemas
and by participant infrastructure.

T1 T2

C1

r100 r100

r100

T1 and T2 validated
using r100

All participants support
r100 of T1 and T2

Namespace Release

Transaction Version

Transactions

Common Items

Description

T1 T2

C1

r101 r100

r101

T1 validated using r101
T2 validated using r100

Participants support r100 of T1
and T2

Participants may choose to
support r101 of T1

Figure 1 – Transaction Versioning in aseXML

3.6 VERSIONING AND COMMON ITEMS

Changes to common items will affect multiple transactions. Two approaches to
handling this problem are available

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 20

FINAL

• change the release number of all transactions using the common item.

• support multiple versions of the common item, and only update the
release number of the transactions needing the updated common item.

The mechanism already outlined for transaction versioning inherently provides
some support for different versions of common items, since these will reside in
different namespaces. However, any subsequent changes to transactions not
initially affected by changes to a common item must incorporate the newest
version of the common item.

Support for multiple versions of common items within a single namespace is
also possible within XML schemas. By limiting common items to type
definitions, and incorporating version information in the type names, instance
documents can be kept “version free” whilst the schemas provide strict type
checking.

In considering the approach to adopt in aseXML, it was decided that the
facilities provided by incorporating versioning in the aseXML namespace were
adequate for the moment, given that changes to common items should be
rare. In order to facilitate the possible use in the future of version information
in type definitions, however, the following guidelines should be followed.

Common items will be limited to type definitions. No common elements
will be declared.

Use of the “ref” facility of XML schemas to refer to common elements is
prohibited. Note that use of the “ref” facility is not prohibited where use
of global elements is considered desirable.

A change to a common type definition will only result in a release
change for those transactions requiring the modified type definition.
Whenever a change is made to a transaction, however, the semantics of
the latest version of all common type definitions used must be
incorporated with any other changes.

3.7 THE BIG PICTURE – INTRODUCING A CHANGE TO aseXML

This section presents a scenario to demonstrate the use of proposed version
control mechanisms.

3.7.1 Scenario
aseXML is at release r100. It becomes evident that a new production
version is needed as a result of changes to the operation of meter data
access within the market.

Two organisations (A and B) agree to take the lead in development of the
change. The sequence of events is detailed in the next section and
shown diagrammatically in figure 2.

3 April, 2001 Version No: 1.0 Page 21

FINAL

T1 T2

C1

r100 r100

r100

T1 and T2 validated
using r100

C1 used by both T1 and
T2

All participants support
r100 of T1 and T2

Namespace Release

Transaction Version

Transactions

Common Items

Description

T1 T2

C1+

r100_a1 r100

r100_a1

T1 validated using r100_a1
T2 validated using r100

C1 enhanced as part of T1
change

A and B support r100_a1 of
T1

Other participants support
r100 of T1 and T2

T1 T2

C1+

r101 r100

r101

T1 validated using r101
T2 validated using r100

A and B support r101 of T1

Other participants may
support r101 of T1

T1 T2

C1+

r101 r102

r102

T1 validated using r101
T2 validated using r102

T2 changes incorporate
changes to C1

C and D support r102 of T2

Other participants may
support r102 of T2

Figure 2 – Introducing A Change To aseXML

3 April, 2001 Version No: 1.0 Page 22

FINAL

3.7.2 Sequence of Events
1. The letter “a” is assigned to the development thread.

2. A and B communicate privately and decide upon a first cut of the
changes.

3. A copy of the current production version of the aseXML namespace
schemas is taken.

4. The transaction being altered may refer to common types. Any
application changes as a result of previous changes (from prior
releases) to these types must be incorporated as part of his release.

5. A and B agree on a development extension. A and B choose r100_a1.

6. In this case, the length of a DLF Code needs to be increased by one
character.

7. All references to the namespace in the schema files are updated to the
development release, together with the version identifiers within the
schema filenames. The version attributes of the affected transactions
are updated to those of the new namespace.

8. A and B enhance their infrastructure to support the changes. There
may be multiple iterations and depending on the schema infrastructure
used, the development version may change as agreed by A and B.

9. A and B are ready for interoperability testing and feel the change is
ready for public scrutiny.

10. An area within the web site containing the aseXML schemas is created
for the development version and the complete schema is placed on the
site.

11. As a result of testing between A and B and public comments, steps 5
to 10 may be repeated.

12. Agreement is reached between A and B that the change is a candidate
for production release. Checks are carried out to integrate any
changes as a result of other completed development threads.

13. A period is entered during which other organisations who choose to
enhance their infrastructure in parallel to A and B may now request A
and/or B to provide conformance testing of their implementation.

14. Agreement is reached amongst participants that the change is ready
for production release.

15. The next production release is assigned and step 7 performed using
the production release. In this scenario, the new release is r101.

It would however have been possible that r101 was released as a
result of a different development thread. According to the process
above, the changes in r101 would need to be rolled into the
development thread and the production release would be r102.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 23

FINAL

16. An area within the web site containing the aseXML schemas is created
for the production version and the complete schema is placed on the
site. The files for all development versions of this thread are deleted
from the site.

17. Other participants may now implement this release point of the
transaction according to their IT schedules.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 24

FINAL

4. NAMESPACES

4.1 aseXML NAMESPACE FORMAT

The aseXML namespace name will use a URN (see RFC 2396) of the
format shown below,

urn:aseXML:ReleaseIdentifier

where

• ReleaseIdentifier is the release identifier of the namespace as per
section 3.4.

Thus an example of the aseXML namespace might be

urn:aseXML:r100

4.2 DEFAULT NAMESPACES

The XML Namespace specification allows the use of a default namespace to
simplify, in some cases, the need to identify what elements come from what
namespace.

Schemas for aseXML should use a default namespace matching the
targetnamespace. For schemas not specifying a targetnamespace, no
default namespace should be defined.

 Instance documents should not use a default namespace due to the
element qualification style being used (see section 6.7). Rather, they
should qualify the root element with the appropriate aseXML namespace.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 25

FINAL

4.3 NAMESPACE PREFIXES

The case-sensitive namespace prefixes in the table below will be used in
schemas and instance documents.

Namespace Prefix

World Wide Web Consortium

http://www.w3.org/2000/10/XMLSchema xsd

http://www.w3.org/2000/10/XMLSchema-
instance

xsi

http://www.w3.org/1999/XSL/Transform xsl

http://www.w3.org/1999/XSL/Format fo

aseXML

urn:aseXML:r? ase

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 26

FINAL

5. SCHEMA ORGANISATION

5.1 SCHEMALOCATION URLs

As per the guidelines discussed in section 3.3.1, schemas need to be able to
be fetched from the web via HTTP. In addition, the generation of a
schemaLocation attribute for a given namespace should be able to be
automated.

It is envisaged that initially NEMMCO will host the aseXML schema files, but
that in the longer term, a more suitable location may be found.

Given that the schemaLocation attribute may contain more than one
namespace/URI pair for a single namespace, such a move is easily
accommodated.

The format of a URL for use in schemaLocation attributes is shown
below;

WebSiteRoot/schemas/ReleaseIdentifier/aseXML_ReleaseIdentifier.xsd

where

• WebSiteRoot is the root portion of the URL needed to gain access to
the web site.

• ReleaseIdentifier is that of the corresponding namespace and
complying with section 3.4.

Thus, an example of a URL might be

http://www.nemmco.com.au/aseXML/schemas/r100/aseXML_r100.xsd

The ReleaseIdentifier is included in the filename portion of the URL so that it
remains unique even when separated from the rest of the URL, for instance in
a local parser cache. It is also included in the URL path in line with section 3.7.

All resources under a given ReleaseIdentifier directory will carry the
ReleaseIdentifier as the last part of the filename prior to the extension.
All schema files will use a .xsd extension.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 27

FINAL

5.2 TRANSACTION FILES

In order to improve the maintainability of the aseXML schemas, multiple
files will be used to hold the schema for a particular release of aseXML.
These files will be included into the schema identified by section 5.1 via
the XML Schema include mechanism (see section 5.3).

A file may contain all transaction exchanges for a business process, a single
transaction exchange within a process or one transaction within a transaction
exchange. The choice is left to the developer, with the overriding principle
being to minimise the number of files used.

In the case of a single file per process, the filename will take the form

ProcessTitle_ReleaseIdentifier.xsd

where

• ProcessTitle is replaced with the short title of the process. It may
contain alphanumeric characters and will use title case.

• ReleaseIdentifier is that of the corresponding namespace and will
comply with section 3.4.

An example of such a file might be

NMIDataAccess_r100.xsd

In the case of a single file per transaction exchange, the filename will
take the form

ExchangeTitle_ReleaseIdentifier.xsd

where

• ExchangeTitle is replaced with the short title of the transaction
exchange. It may contain alphanumeric characters and will use title
case.

• ReleaseIdentifier is that of the corresponding namespace and will
comply with section 3.4.

An example of such a file might be

NMIDiscovery_r100.xsd

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 28

FINAL

In the case of a file per transaction of a transaction exchange, the
filenames will take the form

ExchangeTitleTransactionDescription_ReleaseIdentifier.xsd

where

• ExchangeTitle is replaced with the short title of the transaction
exchange as above.

• TransactionDescription is replaced with the short title of the
transaction in question. It may contain alphanumeric characters and
will use title case. In the common case of a single, two-way
exchange, the texts “Request” and “Response” will be used.

• ReleaseIdentifier is that of the corresponding namespace and will
comply with section 3.4.

An example of the files in this case might be

NMIDiscoveryRequest_r100.xsd

NMIDiscoveryResponse_r100.xsd

5.3 SCHEMA INCLUSION

Where schemas are included in other schemas via an <include> element,
only relative URLs will be used consisting of the filename only.

An example of an include element within a schema is given below.

<include schemaLocation=”NMIDiscovery_r100.xsd”/>

The included schema should NOT have a targetNamespace attribute and
should not use a default namespace, in accordance with reference 2.

5.4 COMMON SCHEMAS

As a minimum, the type definitions common across multiple
transactions will be split across three files as shown in the table below.
See section 6.5 for a discussion of abstract types.

Where a group of common definitions logically stands alone, these
should be placed in their own schema file. An example of this might be
type definitions for addresses.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 29

FINAL

Schema File Usage

Common_r?.xsd Concrete definitions for common types

Abstract definitions for fuel specific variants
(see section 6.5)

Gas_r?.xsd Concrete derivations for gas of abstract types

Gas specific type definitions

Electricity_r?.xsd Concrete derivations for electricity of abstract
types

Electricity specific type definitions

5.5 ELEMENTS/TYPES

Element and type names will use title case and alphanumeric characters.

An example might be

StreetName

Plural names should only be used for collections, typically where
repeating sub-elements are expected.

Element/type names should be kept to 40 characters in length.

Where acronyms cause two upper case characters to be adjacent, they
may be separated by an underscore to improve clarity.

An example might be

PO_Box

Where possible, an element name and its corresponding type name should be
identical.

5.6 TRANSACTION ELEMENTS

The names used for elements representing each transaction will take the
form

ExchangeTitleTransactionDescription

where

• ExchangeTitle is replaced with the short title of the transaction
exchange as in section 5.2.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 30

FINAL

• TransactionDescription is replaced with the short title of the
transaction as in section 5.2.

Examples of elements might be

NMIDiscoveryRequest

NMIDiscoveryResponse

There will be a type per transaction allowing them to be individually checked
against a schema. The type and element will use the same name as per
section 5.5.

5.7 ATTRIBUTES

Attribute names will use title case and alphanumeric characters with the
first letter lowercase.

An example might be

version

This is in keeping with the formatting used in the XML standards (c.f.
schemaLocation).

Attribute names should be kept to 25 characters in length.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 31

FINAL

6. SCHEMA FEATURES

6.1 XML PROLOG

All schemas will include an XML prolog including the version attribute.

An example is shown below.

<?xml version=”1.0” ?>

The default encoding of UTF-8 is assumed. All XML implementations must
support UTF-8 to comply with the Extensible Markup Language (XML) 1.0
specification, with the ASCII character set being a subset of it.

6.2 ANONYMOUS vs NAMED TYPES AND DATA DICTIONARIES

The XML Schema standard allows for types to be defined in-line at their point
of use (anonymous types) or to be named explicitly. Whilst the former
approach leads to more compact definitions, it makes the automated
production of data dictionaries from the schemas more difficult. Additional
information with regards to a type more logically resides with an explicit
definition of the type, rather than embedded within a transaction.

As a result, authors are encouraged to define named types for data items and
item groups.

6.3 ANNOTATIONS

Annotations allow association of comments with arbitrary elements within a
schema and provide a way to make schemas somewhat self-documenting.
Tools such as XMLSpy display these comments when creating XML
documents from the schemas.

The use of annotations is encouraged within aseXML schemas.

As a minimum, each schema file and type/element definition will include
an annotation containing a brief description of its purpose.

For transaction elements, the description should include the
TransactionGroup to which the transaction belongs (see section 9.2.4).

The definition of the annotation element is such that it allows user defined
content in terms of other markup. To further facilitate the automatic production
of data dictionaries, three sub-elements of the documentation element are
recommended;

<ChangeHistory> - documents what has been changed

<DeveloperNotes> - documents why changes were made

<UsageNotes> - information to assist the creators of aseXML
compliant transactions

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 32

FINAL

6.4 SIMPLE TYPES

In order to maximise the value of the schema in validating instance
documents, simple types will be designed to be as restrictive as
possible. This is achieved by the use of facets facility within XML
Schemas.

By preference, the enumeration facet should be used where possible, as
discussed in section 2.4.

6.5 HANDLING FUEL SPECIFIC VARIATIONS

In order to accommodate multiple fuels within the aseXML transactions, it will
be necessary to allow for element variants. The aim should be to minimise any
duplication and maximise the parser’s ability to reject invalid document
instances.

XML schemas provide two mechanisms by which variants might be achieved
– choice elements and type derivation by extension.

Choice elements allow one of a number of elements to appear at a given
location in a document instance. The advantage of this approach is that the
name of the included element clearly indicates its semantics. A choice
between multiple groups of elements is also possible.

Type derivation by extension follows the classical object–oriented paradigm
where the derived types may be used anywhere that the base type appears in
a schema. In addition, the base type may be declared as abstract forcing only
the derived types to be valid in an instance document. In order to assist the
parser in determining the appropriate type, instance documents must provide
the xsi:type attribute on elements of the derived types. Abstract definitions are
only supported on complex types.

By preference, type derivation by extension from an abstract base type
should be used to resolve fuel variants. The base type will be defined in
the Common_r?.xsd file with the abstract attribute set to true. The fuel
specific variants should be defined in the appropriate fuel type file. Use
of abstract types will allow commonality of transactions across fuels
whilst collecting the fuel specific variants in a common location.

Where there is little commonality between fuel variants, or where simple
types are involved, use of a choice may be preferable. Use of choice
statements leads to simpler instance documents but has the
disadvantage that the choice statement must appear in the schema
wherever the choice between fuel variants is required.

The xsi:type attribute will allow applications to easily detect which fuel
type is involved.

6.6 aseXML ATTRIBUTES

Where attributes are defined for aseXML elements, the issues below should
be considered.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 33

FINAL

6.6.1 DEFAULT VALUES
In order to make instance documents as self-explanatory as
possible, all attribute definitions in aseXML schemas will force the
inclusion of the attribute in all instance documents.

6.6.2 ID AND IDREF
Where ID and IDREF attributes are used to provide linkage between
elements, the ID value used need only be unique to the document
instance with no requirement for global uniqueness.

6.7 ELEMENT AND ATTRIBUTE QUALIFICATION

Both elements and attributes will use the default values for namespace
qualification, that is “unqualified”. Only top level elements in instance
documents will need to be qualified with the version of the namespace
name corresponding to the release point of the transactions.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 34

FINAL

7. INSTANCE DOCUMENTS

7.1 XML PROLOG

All instance documents will include an xml prolog identical to that of the
schemas.

7.2 DEFAULT NAMESPACES

Default namespaces will not used in instance documents, due to the
qualification style being used (see section 6.7). Top-level elements should be
explicitly prefixed with “ase” as per section 4.3.

7.3 SCHEMALOCATION ATTRIBUTE

Whenever an aseXML namespace is declared, the corresponding
xsi:schemaLocation attribute should be included in the instance document.
Refer to section 5.1 for details.

7.4 DECLARING NAMESPACES FROM THE XML STANDARDS

Declarations for namespaces such as the XML Schema Instance namespace
will occur on the top-level element of any instance document. The prefixes
used will follow section 4.3.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 35

FINAL

8. TRANSPORT, ENVELOPE OR TRANSACTION

In order to clearly identify what it is that needs to be specified as part of producing
the transactions for a given process, a distinction needs to be made between the
XML defined for each transaction and the XML needed to carry information about
the transaction.

Figure 3 presents a high level logical view of the IT framework needed by a
participant to handle aseXML transactions. This is a simplification of the XML
stack presented in the white paper with all layers below the envelope collapsed
into the Transport layer.

In this model, it is the responsibility of the Transport/Envelope layers to provide
the meta-information about the transaction. Once the XML for these layers is
standardised, developers of a process need only consider the XML needed at the
transaction layer.

8.1 TRANSPORT

The purpose of the transport layer is to accept incoming requests, process
their associated security information, and parse the resulting transaction for
validity via the associated schemas.

Depending on the nature of the transaction routing used, the transport layer
may pass information about the context such as transaction reference
numbers and authenticated sender and other third parties to the transaction
routing function. Alternatively, the routing function may choose to ignore this
information and rely on it being within the transaction envelope, or validate
that the transport and envelope information are consistent.

3 April, 2001 Version No: 1.0 Page 36

FINAL

TRANSACTIONENVELOPETRANSPORT

Security

Optional
Internal

Transaction
Format

Conversion

Transaction
Routing

Addressing and
Context

Management

Error
Reporting

INTERNET

Protocol
Handling

T1 Processor

T2 Processor

T3 Processor

Figure 3 – High Level XML Application Architecture

3 April, 2001 Version No: 1.0 Page 37

FINAL

8.2 ENVELOPE

The purpose of the envelope is to encapsulate all possible transactions within
aseXML and provide a consistent structure for the transaction routing function
to determine what transaction handler should process the transaction. In
addition, it provides context from the sender that should be carried into the
response to allow them to associate the response with their request.

The transaction routing function may choose to rely on the sender information
provided by the transport layer, or may provide additional, application specific
authentication mechanisms. The sender information may be provided explicitly
(connectionless) or implied by a session handle (connection oriented)
provided by the transport layer.

The envelope also provides a mechanism for consistent error reporting.

Agreement on the envelope need only be achieved once for aseXML and
documented independent of individual transactions or processes.

8.3 TRANSACTION

The transaction layer is interested only in the minimal set of information
necessary to process the transaction and produce the required response.

It assumes that other layers have dealt with security and access issues. The
focus is on the business function rather than the IT plumbing.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 38

FINAL

9. ENVELOPE

9.1 INTRODUCTION

Having discussed the separation of envelope from transaction in chapter 8,
this chapter documents the envelope to be used for aseXML.

The envelope consists of three parts:

1. a top level <aseXML> element

2. a <Header> sub-element

3. a payload sub-element.

For transactions, the payload sub-element used is <Transactions>.
For the <Acknowledgements> payload sub-element, refer to section
10.4.

The fields of the <Header> and <Transactions> sub-elements are
described in detail in a subsequent sections.

The entire XML tree starting with the <aseXML> element is referred to as an
aseXML “message”.

9.2 <Header> SUB-ELEMENT

The purpose of the header element is to

• Identify the business parties involved in the transaction exchange.

• Uniquely identify each aseXML message.

• Provide information to allow the routing of the payload element to the
appropriate application system.

An example of a <Header> sub-element is shown below.

<Header>

<From>…</From>

<To>…</To>

<MessageID>…</MessageID>

<MessageDate>…</MessageDate>

<TransactionGroup>…</TransactionGroup>

<Priority>…</Priority>

<SecurityContext>…</SecurityContext>

</Header>

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 39

FINAL

Each sub-element of the <Header> is described below.

9.2.1 <From>, <To> (Mandatory)
The <From> and <To> elements identify the business parties involved.

The value of the element is the string used to uniquely identify each party.

 A context attribute defines the format of the identifier. By default, National
Electricity Market participant identifiers are assumed (context=”NEM”),
however Australian Business Numbers are also supported
(context=”ABN”).

9.2.2 <MessageID> (Mandatory)
The sender of an aseXML message assigns it an unique identifier and
places it in this element. The sender is at liberty to design the format, but
it should consist only of alphanumeric characters and the hyphen
character.

This field is important when correlating response transactions to the
equivalent requests (see section 9.3.3) and in the consideration of the
message acknowledgement process (see chapter 10).

9.2.3 <MessageDate> (Mandatory)
The <MessageDate> element uses the timeInstant built-in type of XML
schemas. It is the time at which the message was generated by the
sender, and should be indicated to the millisecond. Note that this is not
necessarily the same as the time it was delivered to the receiver.

9.2.4 <TransactionGroup> (Mandatory)
The aseXML envelope allows the carriage of more than one transaction
within a single aseXML message. The purpose of the
<TransactionGroup> element is thus to allow the efficient routing and
prioritisation of these transactions by the receiver to the appropriate
application system.

All transactions within an aseXML message must belong to the same
TransactionGroup. The target application system is at liberty to reject any
transactions within the message that do not belong to the stated
TransactionGroup.

TransactionGroup values will typically, though not necessarily, be aligned
to business processes.

9.2.5 <Priority> (Optional)
This element allows the sender to indicate their preference in terms of
timeliness of processing for the payload. The three allowable values are
“High”, “Medium” and “Low”. It is left to the discretion of the receiver to
determine whether and how to honour the requested priority.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 40

FINAL

9.2.6 <SecurityContext> (Optional)
This optional element allows the sender to provide information needed by
the receiver to determine whether or not the sender is authorised to
submit the transactions within the message.

For the Market Settlement And Transfer System (MSATS), this will be
used to hold the participant userid from which the context for transaction
processing is determined.

9.3 <Transactions> SUB-ELEMENT

The purpose of this sub-element is to provide a container for one or more
aseXML transactions. An example is shown below.

<Transactions>

<Transaction transactionID=”…” transactionDate=”…”
initiatingTransactionID=”…” >

<NMIDiscoveryResponse version=”r100”>

…

</NMIDiscoveryResponse>

</Transaction>

</Transactions>

Each transaction is contained within a <Transaction> element. This
element carries three attributes.

9.3.1 transactionID (Mandatory)
The generator of each transaction must generate a unique identifier for it,
following the same format rules as the MessageID. There need be no
correlation between MessageIDs and transactionIDs generated by
the same party.

9.3.2 transactionDate (Mandatory)
In a similar vein to the transactionID, the transactionDate follows
the same format as the MessageDate, and is the time at which the
transaction was generated.

9.3.3 initiatingTransactionID (Optional)
Where the transaction is a response to a previous request, the
<Transaction> element must also carry an
initiatingTransactionID attribute, whose value matches that of the
initiating request transaction. The sender of the request is able to use this
attribute to correlate responses with requests.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 41

FINAL

The specific aseXML transaction is then carried within the <Transaction>
element. As discussed in section 3.5, every aseXML transaction will carry a
version attribute.

9.4 FUTURE ENVELOPE MODIFICATIONS

It is accepted that the aseXML envelope falls far short of other frameworks
currently under development in the international sphere.

In order for initial implementations of aseXML to proceed, however, a
minimum set of functionality is needed to enable participants to rapidly
develop their infrastructure in time for full retail competition.

The final envelope adopted will be dependent to some extent on the transport
framework adopted, and the semantics it provides for recipient information and
transaction context.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 42

FINAL

9.5 A SAMPLE aseXML MESSAGE

Putting together all the information presented thus far in the document, an
example of an aseXML message is given below.

<ase:aseXML xmls:ase=”urn:aseXML:r100”

schemaLocation=”urn:aseXML:r100

http://www.nemmco.com.au/aseXML/schemas/r100/aseXML_r100.xsd”>

<Header>

<From context=”NEM”>PARTICIPANT</From>

<To context=”NEM”>NEMMCO</To>

<MessageID>1324-52165-123ew</MessageID>

<MessageDate>2000-10-31T13:20:01.000+10:00</MessageDate>

<TransactionGroup>NMI</TransactionGroup>

<Priority>High</Priority>

<SecurityContext>zz023</SecurityContext>

</Header>

<Transactions>

<Transaction transactionID=”453-333-23-WED”

transactionDate=”2000-10-31T13:20:00.900+10:00”

initiatingTransactionID=”XXX-45-WSHTY-567” >

<NMIDiscoveryResponse version=”r100”>

…

</NMIDiscoveryResponse>

</Transaction>

</Transactions>

</aseXML>

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 43

FINAL

10. ACKNOWLEDGEMENT MODEL

10.1 INTRODUCTION

Whilst section 1.7 provided a business process level view of transaction
exchange, additional handshaking is needed to allow transaction exchanges
to occur, particularly in the areas of message and transaction
acknowledgement.

The basic design philosophy for the aseXML acknowledgement model is to
provide the sender with a positive acknowledgement of each aseXML
message, and each transaction within the message.

With each acknowledgement, the receiver should provide the sender with a
unique identifier, called a requestID, by which any queries with regard to
message or transaction processing may be resolved. Whilst not currently
specified, the requestID would form the basis for the ability to electronically
query the progress of a message or transaction.

Subsequent sections describe the mechanics of message and transaction
acknowledgements. It should be noted that a reliable transport mechanism is
assumed in the discussion below, and any reference to acknowledgements is
at the application level.

The specific transport selected will employ its own acknowledgement
mechanisms to provide guaranteed delivery.

10.2 MESSAGE ACKNOWLEDGEMENT

There may be considerable delay between the delivery of a message and the
processing of the transactions within it. The delay is typically a result of
process scheduling decisions by the receiver.

In order that the sender receive timely acknowledgement of message
delivery, the receiver should respond immediately to each aseXML
message with a message acknowledgement.

An example of a message acknowledgement is given below, with each
attribute described in subsequent sections.

<MessageAcknowledgement

initiatingMessageID=”…”

requestID=”…”

requestDate=”…”

status=”Accept” />

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 44

FINAL

10.2.1 initatingMessageID (Mandatory)
The value of this attribute corresponds to the value of the <MessageID>
element in the header of the message being acknowledged.

10.2.2 requestID (Mandatory)
The requestID is a unique identifier, assigned by the receiver of a
message, to identify the processing they intend to perform as a result of
receiving it.

10.2.3 requestDate (Mandatory)
This attribute indicates the date and time at which the message was
queued for processing.

10.2.4 status (Mandatory)
There are two possible values for this attribute, “Accept” or “Reject”.

“Accept” indicates the message is accepted with no fatal errors detected.

“Reject” indicates the message was rejected. The receiver will perform no
further processing on the contained transactions. The acknowledgement
should carry at least one event with a severity of “Fatal”.

In the case of “Reject”, the message acknowledgement will contain
one or more <Event> elements (see chapter 11) detailing the errors
detected in the message. Examples would include schema
validation errors.

10.3 TRANSACTION ACKNOWLEDGEMENT

For every transaction, a transaction acknowledgement must be sent to
the originator.

The purpose of the acknowledgement is to provide the originator with an
indication of the necessary information to track the progress of the request.

An example of a transaction acknowledgement is given below, with each
attribute described in subsequent sections.

<TransactionAcknowledgement

initiatingTransactionID=”…”

requestID=”…”

requestDate=”…”

status=”Partial” />

10.3.1 initatingTransactionID (Mandatory)
The value of this attribute corresponds to the value of the
transactionID attribute on the container element for the transaction.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 45

FINAL

10.3.2 requestID (Mandatory)
The requestID is an identifier, assigned by the receiver of a transaction,
to identify the processing they intend to perform as a result of receiving it.

10.3.3 requestDate (Mandatory)
This attribute indicates the date and time at which the transaction was
queued for processing.

10.3.4 status (Mandatory)
There are three possible values for this attribute, “Accept”, “Partial” or
“Reject”.

“Accept” indicates the transaction is accepted with no errors detected.
The acknowledgement may carry ”Informational” or “Warning” events.

“Partial” indicates that the transaction will be processed but portions of it
were in error and will be ignored. An example of this might be meter data
records. The acknowledgement may carry events with any severity level
except “Fatal”.

“Reject” indicates the transaction was rejected. The receiver will perform
no further processing of the transaction. In the case of a request
transaction, no response transactions, where normally expected, will be
generated. The acknowledgement should carry at least one event with a
severity of “Fatal”.

In the case of “Partial” and “Reject”, the message acknowledgement
will contain one or more <Event> elements (see chapter 11)
detailing the errors detected in the message. Examples would
include missing data or invalid data.

Where the transaction is not supported, a status of “Reject” will be
used, with the <Event> element indicating this error condition.

Where the receiver does not support the version of the transaction,
a status of “Reject” will be used, with the <Event> element
indicating the versions of the transaction supported by the receiver.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 46

FINAL

10.4 EXCHANGING ACKNOWLEDGEMENTS

All message and transaction acknowledgments will be carried in an
aseXML message within a payload element of <Acknowledgements>.
Messages with an <Acknowledgements> payload will not themselves be
acknowledged.

Multiple acknowledgements of both types may be carried in a single
payload, with those for messages preceding those for transactions.

Where transaction acknowledgements are carried, they will all
correspond to transactions of the same <TransactionGroup>. The
TransactionGroup value will be included in the header, consistent will its
use for the corresponding transactions.

Where only message acknowledgements are carried, a
<TransactionGroup> of “MSGS” will be used.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 47

FINAL

10.5 A SAMPLE aseXML TRANSACTION EXCHANGE

The diagram below provides an example of a transaction exchange between a
(S)ender and a (R)eceiver. Each line represents an aseXML message, with
some elements and attributes omitted for clarity.

H() indicates the contents of the message header, whilst T() and A() represent
the <Transactions> and <Acknowledgements> payload elements.

The diagram shows the sender generating a message containing three
transactions (1). The message (2) and then the transactions (3) are
acknowledged by the receiver. The receiver then generates a response
transaction (4) to the first of the three in the initial message. This response
message (5), then the transaction (6) it contains are acknowledged.

 “m=” refers to a <MessageID> element value.

“im=” refers to a initiatingMessageID attribute value.

“t=” refers to a transactionID attribute value.

“it=” refers to a initiatingTransactionID attribute value.

“r=” refers to a requestID attribute value.

“g=” refers to a <TransactionGroup> element value.

H(m=R2, g=xxx) A(it=56 r=300, it=57 r=301, it=58 r=302) (3)

H(m=R1, g=message) A(im=S1 r=95) (2)

H(m=R3, g=xxx) T(t=405 it=56) (4)

H(m=S2, g=message) A(im=R3, r=1123) (5)

H(m=S1, g=xxx) T(t=56, t=57, t=58) (1)

H(m=S3, g=xxx) A(it=405 r=4567) (6)

SENDER RECEIVER

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 48

FINAL

11. ERROR REPORTING AND THE <Event> ELEMENT

Error reporting is an important function of message and transaction
acknowledgements. Errors will also need to be reported in transaction responses.
In order for errors to be reported consistently, aseXML defines a standard
<Event> element for this purpose.

One or more <Event> elements are supported within a
<MessageAcknowledgement> or a <TransactionAcknowledgement>
element.

It is up to the designer of a transaction exchange to decide how to incorporate
process level error reporting. In general, a response transaction should support a
content choice between the normal response and one or more <Event> elements.

The example event element below indicates that a schema error has occurred.
Subsequent sections describe the attributes and elements of the <Event>
element.

<Event class=”Message” severity=”Fatal”>

<Code>2</Code>

<KeyInfo>Line number or other info</KeyInfo>

<Context>The contents around the error<Context>

<Explanation>Further text describing the error</Explanation>

</Event>

11.1 class ATTRIBUTE (Mandatory)

All events fall into one of the following classes.

• Message

The message class covers validation of the aseXML message
structure. Examples of errors at this level include inconsistent header
elements, unsupported transactions and unsupported transaction
versions.

• Data

The data class covers application level validation. Events of this class
will normally only appear in <TransactionAcknowledgement>
elements or in transaction responses.

• Processing

The processing class covers environmental issues. An example might
be the long-term unavailability of target applications.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 49

FINAL

11.2 severity ATTRIBUTE (Mandatory)

The severity attribute indicates the nature of the event, and takes one of the
following values.

• Information

Processing is unaffected by the contents of the event. It is provided for
general interest.

• Warning

Processing may proceed by application of overriding processing rules.
An example might be substitution of a default value for a missing
optional element.

• Error

A error is present that must be corrected. Processing may still
continue. An example might be an invalid meter data record that is
unrelated to the remainder of the records presented for processing.

• Fatal

The nature of the error is such that further processing is not possible.

11.3 <Code> SUB-ELEMENT (Mandatory)

This element is a numeric code corresponding to the particular event
condition. Values from 0 to 999 are reserved for definition by the aseXML
standard. The intention is to provide a common set of values covering most
situations, allowing consistent interpretation of codes. The currently defined
list is shown in section 11.8. Where the code is not in the reserved range, a
description attribute should also be provided on the <Code> element.

The range 1000 to 1999 is also reserved for use by the MSATS system.

11.4 <KeyInfo> SUB-ELEMENT (Optional)

Where the combination of class and code are insufficient to completely
describe an event, this element may be used to provide further detail as to the
information needed to locate the source of the event within the original
transaction.

For CSV data carried as the content of an element, the value of the
<KeyInfo> field should be the key column values for the line in error,
separated by commas if necessary.

11.5 <Context> SUB-ELEMENT (Optional)

This element should contain the portion of the input to which the event applies.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 50

FINAL

11.6 <Explanation> SUB-ELEMENT (Optional)

Where the code used is of a generic nature, and further explanation is
required, this information should be provided via this element.

Another example of an event is provided below, in this case of an event
generated for an unknown transaction version.

<Event class=”message” severity=”fatal”>

<Code>4</Code>

<SupportedVersions>

<Version>r90</Version>

<Version>r95</Version>

</SupportedVersions>

</Error>

11.7 <SupportedVersions> SUB-ELEMENT (Optional)

Where the condition of an unsupported transaction version is indicated, the
event should include the <SupportedVersions> element. It indicates the
versions of the transaction that are supported by the receiver via one or more
<Version> sub-elements.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 51

FINAL

11.8 Reserved Event Codes

Class Code Description Notes

message 1 Not well formed

2 Schema validation failure

3 Transaction not supported

4 Transaction version not
supported

data 1 Record(s) not found

2 Data missing

3 Data invalid

processing 1 Application unavailable

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 52

FINAL

12. SUPPORT FOR CSV FORMAT DATA

For high volume, repetitive data, it may be considered appropriate for this to be
carried in CSV format within a transaction element.

Data within a given column of the CSV data should have the same meaning for
ALL lines. CSV format data utilising a pseudo-tagged structure, whereby
particular lines or columns are used to interpret the meaning of other lines or
columns, is NOT supported by aseXML.

The first line of any CSV data should consist of column designators. The purpose
of the designators is twofold;

1. Column interpretation is able to be position independent.

Applications processing the CSV data must utilise the designators to
determine the column meaning, and should NOT assume the columns will
always be delivered in a fixed order.

2. Products such as Microsoft Excel or Oracle SQL*Loader can utilise the
column designators to more usefully process the subsequent data lines.

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3 April, 2001 Version No: 1.0 Page 53

FINAL

13. SAMPLE SCHEMAS AND INSTANCE DOCUMENT EXAMPLES

The schemas for each version of aseXML may be fetched from

www.nemmco.com.au/aseXML/schemas/r?/*.xsd

where ? is replaced with the desired version.

For the NMI Data Access transactions, the files of interest are

• Common_r?.xsd

• Gas_r?.xsd

• Electricity_r?.xsd

• aseXML-r?.xsd

• NMIDataAccess_r?.xsd

Sample instance documents may be found at

www.nemmco.com.au/aseXML/examples/r?/*.xml

where ? is replaced with the desired version.

For the NMI Data Access transactions, the sample files are

• NMIDiscoveryReq-dpid.xml – NMI request based on Australia Post
Delivery Point Identifier

• NMIDiscoveryReq-srch.xml – NMI request based on general address

• NMIDiscoveryRsp.xml – Successful response to NMI request

• NMIDiscoveryRsp-err.xml – Unsuccessful response to NMI request

• NMIStandingDataReq.xml – NMIStanding Data request

• NMIStandingDataRsp.xml – Successful response to NMI Standing Data
request.

