

2024 ELI Report Appendix 5. South Australia

June 2024

Important notice

Purpose

This report has been published to implement the Energy Security Board (ESB) 'enhanced information' transmission access reforms. The report is intended to support more informed investment and decision-making processes in the National Electricity Market, by collating public metrics and indicators that represent important locational characteristics of the power system. This report includes only publicly available information from existing AEMO, industry, and stakeholder publications.

AEMO publishes this *Enhanced Locational Information (ELI) Report* pursuant to its functions in section 49(2)(c) of the National Electricity Law. This publication is generally based on information available to AEMO as at 30 April 2024, unless otherwise indicated.

Disclaimer

AEMO has made reasonable efforts to ensure the quality of the information in this publication but cannot guarantee that information, forecasts and assumptions are accurate, complete or appropriate for your circumstances.

Modelling work performed as part of preparing this publication inherently requires assumptions about future behaviours and market interactions, which may result in forecasts that deviate from future conditions. There will usually be differences between estimated and actual results, because events and circumstances frequently do not occur as expected, and those differences may be material.

This publication does not include all of the information that an investor, participant or potential participant in the National Electricity Market might require, and does not amount to a recommendation of any investment.

Anyone proposing to use the information in this publication (which includes information and forecasts from third parties) should independently verify its accuracy, completeness and suitability for purpose, and obtain independent and specific advice from appropriate experts.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this publication:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this publication; and
- are not liable (whether by reason of negligence or otherwise) for any statements, opinions, information or other matters contained in or derived from this publication, or any omissions from it, or in respect of a person's use of the information in this publication.

Copyright

© 2024 Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the <u>copyright permissions</u> on AEMO's website.

Version control

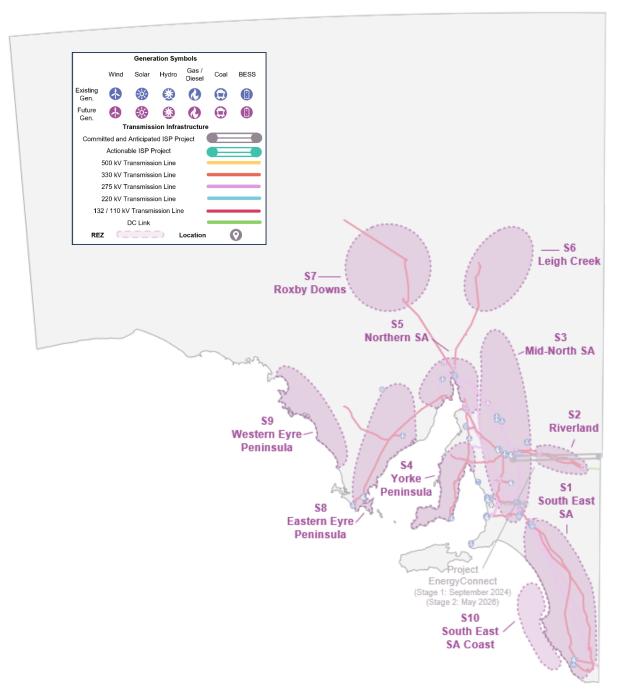
Version	Release date	Changes
1.0	07/06/2024	Initial release.

AEMO acknowledges the Traditional Owners of country throughout Australia and recognises their continuing connection to land, waters and culture. We pay respect to Elders past and present.

Contents

A5.1	Introduction	4
A5.2	S1 – South East South Australia	5
A5.3	S2 – Riverland	8
A5.4	S3 – Mid-North South Australia	11
A5.5	S4 – Yorke Peninsula	14
A5.6	S5 – Northern South Australia	17
A5.7	S6 – Leigh Creek	20
A5.8	S7 – Roxby Downs	22
A5.9	S8 – Eastern Eyre Peninsula	25
A5.10	S9 – Western Eyre Peninsula	28
A5.11	S10 – South East South Australia Coast	30
A5.12	Non-REZ	32

Figures


Figure 1 Overview of South Australia region and REZs 4

A5.1 Introduction

This appendix provides detailed locational indicators and metrics for each REZ within South Australia. Figure 1 provides an overview map of the South Australia region and associated REZs. Appendix A2 provides a guide to interpreting the REZ scorecards presented throughout this appendix.

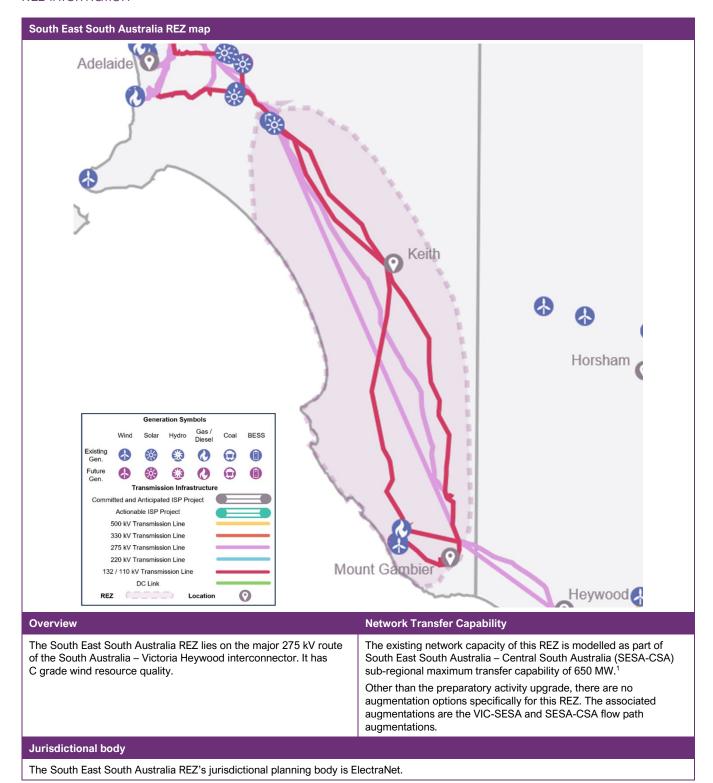

This appendix uses existing sources of publicly available information which includes the Draft 2024 ISP. Some of this information may change with the publication of the Final 2024 ISP in June 2024.

Figure 1 Overview of South Australia region and REZs

A5.2 S1 – South East South Australia

REZ information

¹ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

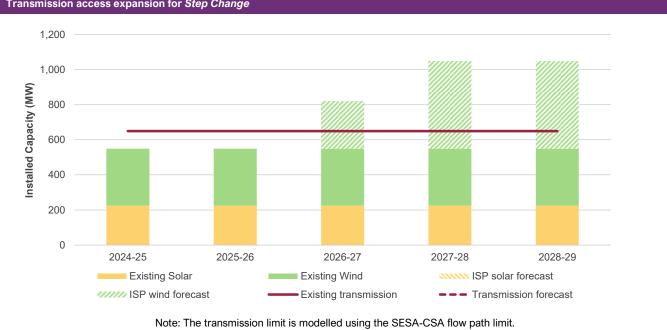
Generation Hosting capacity or access rights

There is no hosting capacity provided by the jurisdictional planning body which directly applies to this REZ. AEMO will work with the relevant parties to understand the hosting capacity for future publications.

Resource metrics					
Resource	Solar	Wi	ind		
Resource Quality	D	(
Renewable Potential (MW)	100	3,200			
Climate hazard					
Temperature score	D	Bushfire score	D		

Marginal loss factors

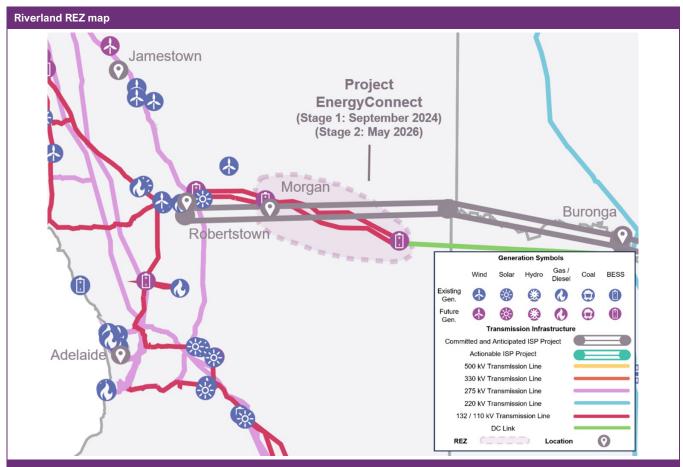
Marginal Loss Factor						
Technology	Voltage (kV)	2024-25 MLF				
Onlar	3.3 – 11	0.9802 - 0.9993				
Solar	132	1.009 - 1.0102				
Wind	33	0.9709 - 0.9755				


Congestion information – calendar year 2023							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
V:S_600_HY_TEST	172.1	177,314.0	Generation contributing to flow from Heywood to South East 275 kV				
V:S_600_HY_TEST_DYN	161.5	414,784.4	Generation contributing to flow from Heywood to South East 275 kV				
V::S_NIL_MAXG_xxx	34.8	92,210.6	Generation connecting to 132 kV network between South East and Tailem Bend				
S>NIL_SGBN_SGSE-T2	19.6	116,853.7	Generation contributing to flow from Snuggery to South East 132 kV on trip of the Snuggery-Blanche 132 kV line				

VRE semi-sche	VRE semi-scheduled curtailment – calendar year 2023						
DUID	Generator name Maximum Capacity (MW)		Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
CNUNDAWF	Canunda Wind Farm	46	0.2	0.0	205		
LKBONNY1	Lake Bonney Wind Farm Stage 1	81	1.2	0.3	2,218		
LKBONNY2	Lake Bonney Wind Farm Stage 2	159	1.6	0.7	5,977		
LKBONNY3	Lake Bonney Wind Farm Stage 3	39	2.5	0.3	2,259		
MAPS2PV1	Mannum - Adelaide Pipeline Pumping Station No 2, PV Units 1-6	13	0.5	0.0	131		
MAPS3PV1	Mannum - Adelaide Pipeline Pumping Station No 3, PV Units 1-6	12	0.2	0.0	25		
MBPS2PV1	Murray Bridge-Onkaparinga Pipeline Pumping Station No 2	10	0.0	0.0	2		

VRE curtailment – ISP forecast							
	20	25	20	26	2027		
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading	
Step Change	-	14%	-	13%	-	10%	

ISP forecast


ISP forecast												
			Solar PV ((MW)			Wind (MW)				
VRE outlook	Existing/	•				Existing/			Projected	ł		
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
Step Change	225	-	-	-	-	-	325	-	-	250	500	500
Transmission access expansion for Step Change												

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability
-	-	-	-

A5.3 S2 – Riverland

REZ information

Overview

The Riverland REZ is on the South Australian side of the proposed Project EnergyConnect route. It has grade C solar resource quality.

Network Transfer Capability

There is minimal existing renewable generation in the zone. Prior to Project EnergyConnect, the network transfer capability is 130 MW. Once Project EnergyConnect is commissioned, the REZ transmission limit increases by approximately 800 MW.²

Jurisdictional body

The Riverland REZ's jurisdictional planning body is ElectraNet.

Generation Hosting capacity or access rights

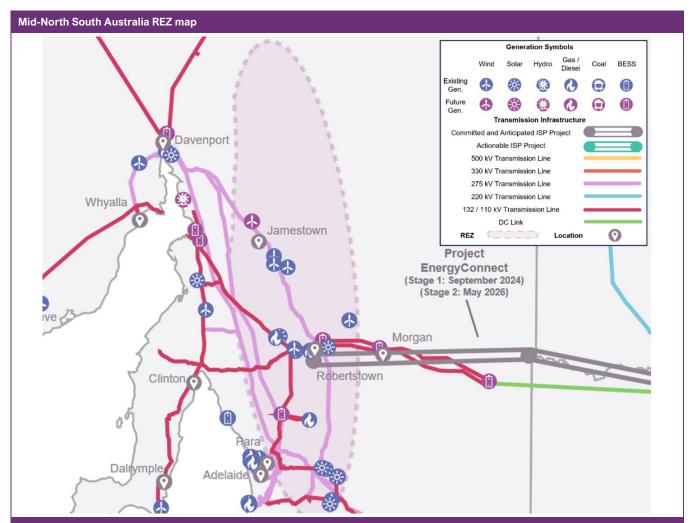
Resource metrics				
Resource	Solar	Wi	nd	
Resource Quality	С	E	<u> </u>	
Renewable Potential (MW)	4,000	1,4	.00	
Climate hazard				
Temperature score	E	Bushfire score	С	

² See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

Marginal Loss Factor		
Technology	Voltage (kV)	2024-25 MLF
Solar	3.3	0.9751 - 0.9787

Congestion information – calendar year 2023						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
S>NIL_MHNW1_MHNW2	1,336.6	8,148,303.7	Generation contributing to westward flow on the Murraylink DC interconnector			
SVML^NIL_MH-CAP_ON	520.7	593,332.7	Generation contributing to Eastward flow on the Murraylink DC interconnector			
S>NIL_NWRB2_NWRB1	376.8	2,716,676.0	Generation contributing to flow from North West Bend to Robertstown 132 kV on trip of a parallel line			

VRE semi-sche	duled curtailment –	calendar year 2023	3			
DUID	Generate	Generator name		Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
MANNSF2	Mannum 2	Solar Farm	29	0.0	0.0	0
MWPS1PV1	Morgan-Whyalla F Statior		4	1.9	0.0	124
MWPS2PV1	Morgan-Whyalla F Statior		4	2.0	0.0	149
MWPS3PV1	Morgan-Whyalla F Station		6	1.4	0.0	161
MWPS4PV1	Morgan-Whyalla F Statior		4	2.5	0.0	170
VRE curtailmen	nt – ISP forecast					
2025			20	026	20	27
Scenario	Curtailment Economic offloading		Curtailment	Economic offloading	Curtailment	Economic offloading
Step Change	-	17%	-	23%	-	19%


ISP forecast

ISP foreca	st													
		Solar PV (MW)							Wind (MW)					
VRE outlook		Existing/			Projected	j		Existing/			Projected	t		
		ommitted/ nticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029	
Step Change		55	-	-	-	-	-	-	-	-	-	-	-	
Transmiss	ion acc	cess expans	ion for S	tep Chan	ge									
	,						,-						_	
													_	
§							/							
∑ 7														
acity														
Installed Capacity (MW)	500					_/_							_	
lled						,'							_	
Insta	300													
_	200				_/								_	
	100													
	0	2024	1-25		2025-26		2026-2	7	2027-28		2028	29		
			Existing S		2020 20	Ex	kisting Wii			ISP solar		, 20		
			ISP wind				•	nsmission		Transmis	sion forec	ast		
Committed Fransmiss		cipated, and ojects	Actiona	ble		Timing		Status				e in netw r capabili		
Project Ene	rgyCo	nnect – Stag	e 2			May 202	26 ³	Committed			800 MW	/		

³ Under the Draft 2024 ISP *Step Change* scenario, the project is modelled with a timing of July 2026.

A5.4 S3 – Mid-North South Australia

RF7 information

Overview

The Mid-North South Australia REZ has grade C wind and solar resource quality. There are several major wind farms in service in this REZ, totalling more than 1,700 MW of installed or committed capacity.

Four 275 kV parallel circuits provide the bulk transmission along the corridor from Davenport to near Adelaide (Para) which traverses this REZ. This transmission corridor forms the backbone for exporting power from REZs north and west of this REZ in South Australia.

Network Transfer Capability

The capability of this zone to accommodate new generation is subject to the MN1 mid-north group constraint, which has a transmission limit of 2,400 MW.⁴

Jurisdictional body

The Mid-North South Australia REZ's jurisdictional planning body is ElectraNet.

Generation Hosting capacity or access rights

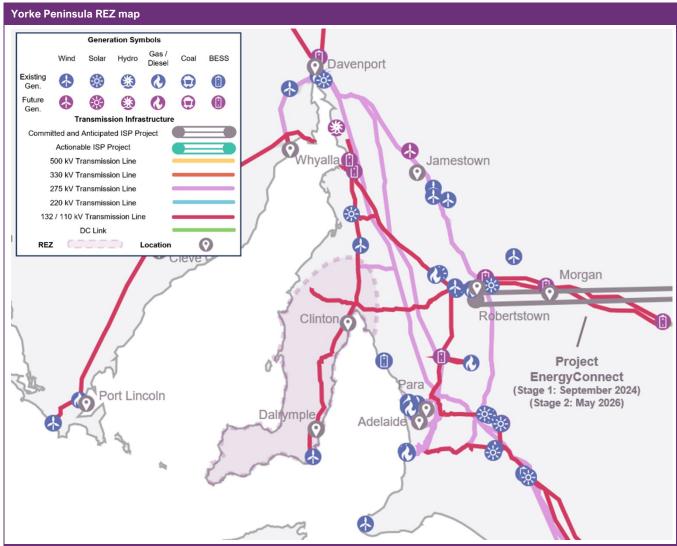
⁴ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

Resource metrics								
Resource Solar Wind								
Resource Quality	Resource Quality C C							
Renewable Potential (MW)	1,300	4	,600					
Climate hazard								
Temperature score	D	Bushfire score	D					

Marginal Loss Factor						
Technology	Voltage (kV)	2024-25 MLF				
	33	0.8932				
Wind	132	0.9486 - 0.9547				
	275	0.9423 - 0.9643				

Congestion information – calend	ar year 2023		
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation
S>NIL_NWRB2_NWRB1	376.8	2,716,676.0	Generation contributing to flow from North West Bend to Robertstown 132 kV on trip of a parallel line
S>NIL_HUWT_STBG3	368.3	3,234,034.9	Generation contributing to flow from Snowtown to Bungama 132 kV on trip of the Hummocks-Waterloo 132 kV line
S>>NIL_TWPA_TPRS	64.3	352,652.4	Generation contributing to flow from Templers to Roseworthy 132 kV on trip of the Templers West-Para 275 kV line
S>>NIL_RBTU_RBTU	27.7	72,496.6	Generation contributing to flow from Robertstown to Tungkillo 275 kV on trip of a parallel line
S>NIL_BWMP_RHBR-T	22.8	138,366.1	Generation contributing to flow from Red Hill to Brinkworth 132 kV on trip of the Blyth West-Munno Para 275 kV line
S>>NIL_RBTU_WTTP	20.3	66,116.3	Generation contributing to flow from Waterloo to Templers 132 kV on trip of a Robertstown-Tungkillo 275 kV line
S>NIL_BWMP_HUWT	13.1	102,338.3	Generation contributing to flow from Hummocks to Waterloo 132 kV on trip of the Blyth West-Munno Para 275 kV line

VRE semi-sche	VRE semi-scheduled curtailment – calendar year 2023								
DUID	Generator name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)				
BLUFF1	The Bluff Wind Farm	53	0.3	0.0	418				
CLEMGPWF	Clements Gap Wind Farm	57	1.3	0.3	2,198				
GSWF1A	Goyder South Wind Farm 1A	201	0.0	0.0	0				
GSWF1B1	Goyder South Wind Farm 1B	196	0.0	0.0	0				
HALLWF1	Hallett 1 Wind Farm	95	1.7	0.6	4,851				
HALLWF2	Hallett 2 Wind Farm	71	2.0	0.5	4,319				
HDWF1	Hornsdale Wind Farm	102	1.3	0.5	4,436				


Step Change	-	8%	-	9%	-	6%
Scenario	Curtailment Economic offloading		Curtailment	Economic offloading	Curtailment	Economic offloading
	20	25	20	026	20	27
VRE curtailmer	nt – ISP forecast					
WGWF1	Willogoleche	Wind Farm	119	8.4	3.4	29,563
WATERLWF	Waterloo V	Vind Farm	130	1.9	0.7	6,510
SNOWTWN1	Snowtown Wind F		99	2.7	1.0	8,902
SNOWSTH1	Snowtown Sou	th Wind Farm	126	0.2	0.1	954
SNOWNTH1	Snowtown Wind Fa	rm Stage 2 North	144	0.4	0.2	1,562
NBHWF1	North Brown H	lill Wind Farm	132	0.4	0.2	1,736
HDWF3	Hornsdale W	/ind Farm 3	109	1.1	0.4	3,912
HDWF2	Hornsdale W	/ind Farm 2	102	1.2	0.5	3,953

ISP forecast

		Solar PV (MW)							Wind (MW)					
VRE o	utlook	Existing/	Projecte	d			Existing/		Projected					
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated		2026	2027	2028	202		
Step Chang	ge	-	-	-	-	-	-	1,732	-	-	450	450	550	
Trans	mission	access expans	ion for S	tep Chan	ge									
	4,000													
	3,500										-			
<u>></u>	3,000													
y (MV	2,500													
apacit	2,000													
Installed Capacity (MW)	1,500													
nstal	1,000													
_	500													
	0													
	O	2024-25		2025	5-26	2	2026-27		2027-28		2028-29			
		Exis	ting Solar			Existin	ng Wind		amm ISI	⊃ solar fore	ecast			
		////// ISP	wind fored	cast	_	Existin	ng transm	ission	 Tra	ansmission	forecast			
	١	lote: The transm	nission ac	cess expa	ansion for	ecasts sho	ow the res	sults for the	MN1 group	constraint	augmenta	tion.		
		nticipated, and Projects	l Actional	ole		Timing		Status				e in netw capabili		

A5.5 S4 – Yorke Peninsula

REZ information

Overview

The Yorke Peninsula REZ has grade C wind resource quality. A single 132 kV line extends from Hummocks to Wattle Point (towards the end of Yorke Peninsula).

Network Transfer Capability

The existing 132 kV network has 100 MW of network transfer capability. Transmission augmentation is required to connect any significant additional generation in this REZ.

The capability of this zone to accommodate new generation is subject to the MN1 mid-north group constraint.⁵

Jurisdictional body

The Yorke Peninsula REZ's jurisdictional planning body is ElectraNet.

Generation Hosting capacity or access rights

⁵ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

Resource metrics							
Resource Solar Wind							
Resource Quality	F	С					
Renewable Potential (MW)	-	1,400)				
Climate hazard							
Temperature score	D	Bushfire score	С				

Marginal Loss Factor	Marginal Loss Factor							
Technology	Voltage (kV)	2024-25 MLF						
Wind	132	0.8179						

Congestion information – calendar year 2023							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
S>NIL_HUWT_STBG3	368.3	3,234,034.9	Generation contributing to flow from Snowtown to Bungama 132 kV on trip of the Hummocks-Waterloo 132 kV line				
S>NIL_BWMP_HUWT	13.1	102,338.3	Generation contributing to flow from Hummocks to Waterloo 132 kV on trip of the Blyth West-Munno Para 275 kV line				

VRE semi-scheduled curtailment – calendar year 2023									
DUID	Generato	or name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)			
WPWF	Wattle Point Wind Farm		91	4.0	1.2	10,842			
VRE curtailmen	t – ISP forecast								
	20	25	2	026	20	27			
Scenario	Curtailment Economic offloading		Curtailment	Economic offloading	Curtailment	Economic offloading			
Step Change	-	13%	-	15%	-	11%			

0

2024-25

Existing Solar

ISP wind forecast

ISP forecast

			Solar PV ((MW)			Wind (MW))				
VRE outlook				Projected	j		Existing/			Projected	l	
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
Step Change	-	-	-	-	-	-	91	-	-	-	-	50
ransmissio	n access expans	sion for S	tep Chan	ge								
	140											
	140 ———									<i>''''''</i>	////	
	120							~~~~				_
(w	120 ————											_
y (MW)												_
acity (MW)	120 ————											_
d Capacity (MW)	120 ————			-								_
Installed Capacity (MW)	120 ————————————————————————————————————											_

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability
-	-	-	-

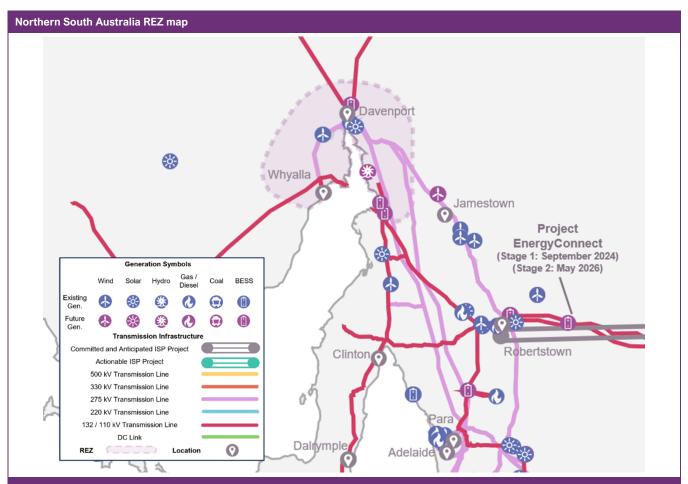
2026-27

Existing transmission

Existing Wind

2027-28

ISP solar forecast


--- Transmission forecast

2028-29

2025-26

A5.6 S5 – Northern South Australia

REZ information

Overview

Network Transfer Capability

The Northern South Australia REZ has grade B solar resource quality. This REZ forms a candidate for a hydrogen electrolyser facility in South Australia.

The capability of this zone to accommodate new generation is subject to the MN1 mid-north and NSA1 northern group constraint. 6

Jurisdictional body

The Northen South Australia REZ's jurisdictional planning body is ElectraNet.

Generation Hosting capacity or access rights

Resource metrics								
Resource	Solar Wind							
Resource Quality	В	E						
Renewable Potential (MW)	2,900		-					
Climate hazard								
Temperature score	E	Bushfire score	D					

⁶ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

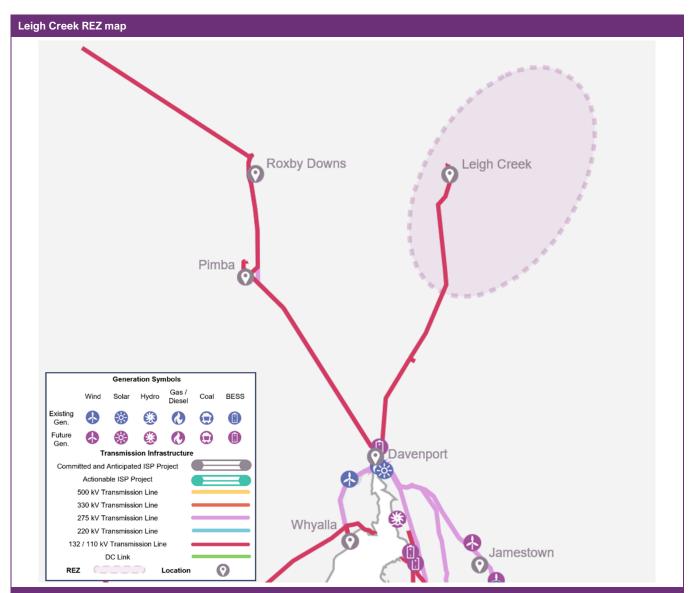
Marginal Loss Factor							
Technology	Voltage (kV)	2024-25 MLF					
Solar	132	0.9565					
Solar	275	0.9608					
Wind	275	0.9576 - 0.9608					

Congestion information – calendar year 2023						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
S>NIL_HUWT_STBG3	368.3	3,234,034.9	Generation contributing to flow from Snowtown to Bungama 132 kV on trip of the Hummocks-Waterloo 132 kV line			

VRE semi-sche	duled curtailment –	calendar year 2023	3			
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
BNGSF1	Bungala One	Solar Farm	110	0.3	0.1	932
BNGSF2	Bungala Two	Solar Farm	110	0.3	0.1	840
LGAPWF1	Lincoln Gap Win	d Farm Stage 1	123	0.6	0.3	2,444
LGAPWF2	Lincoln Gap Win	Lincoln Gap Wind Farm Stage 2		0.9	0.3	2,564
PAREPS1	Port Augusta Rei Park –	٠, ١	77	1.5	0.3	2,670
PAREPW1	Port Augusta Rei Park –	٠, ١	201	2.0	1.5	13,551
VRE curtailmen	t – ISP forecast					
	20	25	20	026	2027	
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading
Step Change	-	9%	-	9%	-	8%

ISP forecast

ISP forecast												
	Solar PV (MW)					Wind (MW)						
VRE outlook	Existing/		l	Projected	ojected		Existing/	Projected				
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
Step Change	578	-	-	-	-	-	422	-	-	-	-	-


Transmission access expansion for Step Change 1,200 1,000 Installed Capacity (MW) 800 600 400 200 0 2024-25 2025-26 2026-27 2028-29 2027-28 Existing Solar Existing Wind ISP solar forecast ////// ISP wind forecast Existing transmission --- Transmission forecast

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability
-	-	-	-

Note: S5 forecast shows results for the NSA1 group constraint augmentation.

A5.7 S6 - Leigh Creek

REZ information

Overview

Network Transfer Capability

The Leigh Creek REZ is located between 150 km and 350 km north-east of Davenport. It has grade A and B solar and wind resource quality. This REZ is currently supplied with a single 132 kV line.

The network transfer capability of this REZ is listed as 0 MW in the draft 2024 ISP. The capability of this zone to accommodate new generation is also subject to the MN1 mid-north group constraint.⁷

Jurisdictional body

The Leigh Creek REZ's jurisdictional planning body is ElectraNet.

Generation Hosting capacity or access rights

⁷ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

Resource metrics								
Resource	Solar Wind							
Resource Quality	А	В						
Renewable Potential (MW)	6,500	2,4	100					
Climate hazard								
Temperature score	D	Bushfire score	С					

Marginal Loss Factor							
Technology	Voltage (kV)	2024-25 MLF					
-	-	-					

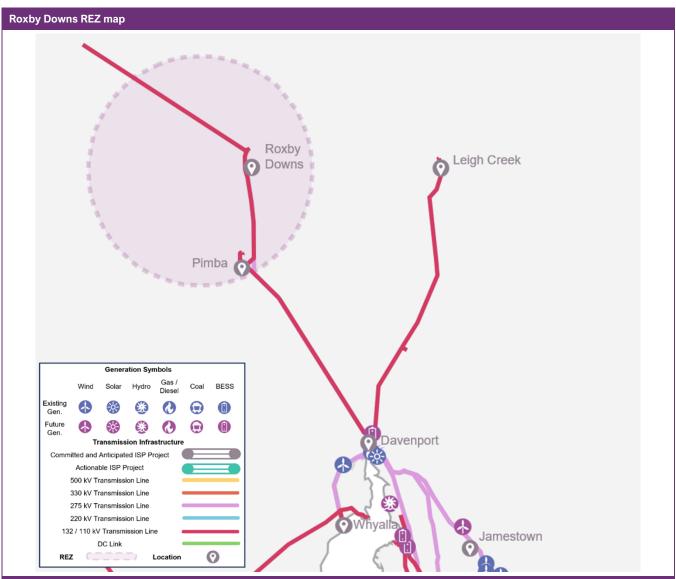
Congestion and curtailment

Congestion information – calendar year 2023							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2023										
DUID	Generat	or name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)				
-	-		-	-	-	-				
VRE curtailmen	nt – ISP forecast									
	20	25	20)26	20	27				
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading				
Step Change	-	-	-	-	-	-				

ISP forecast

ISP forecast												
		Wind (MW)										
VRE outlook	Existing/ committed/ anticipated		Projected				Existing/	Projected				
		2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
Step Change	-	-	-	-	-	-	-	-	-	-	-	-


Transmission access expansion for Step Change

There are no existing, committed, anticipated VRE projects for this REZ and the modelling outcomes for the *Progressive Change* and *Step Change* scenarios did not project any additional VRE for this REZ.

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability
-	-	-	-

A5.8 S7 – Roxby Downs

REZ information

Overview

The Roxby Downs REZ is located a few hundred kilometres northwest of Davenport. It has grade A solar resource quality. The only significant load in the area is the Olympic Dam and Carrapateena mines.

This REZ is currently connected with a 132 kV line that provides supply to small loads, and two privately owned 275 kV lines from Davenport that provide supply to large mines in the area.

Network Transfer Capability

The network transfer capability of this REZ is 500 MW, although the capability of this zone to accommodate new generation is subject to the MN1 mid-north group constraint.⁸

Jurisdictional body

The Roxby Downs REZ's jurisdictional planning body is ElectraNet.

⁸ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

Generation Hosting capacity or access rights

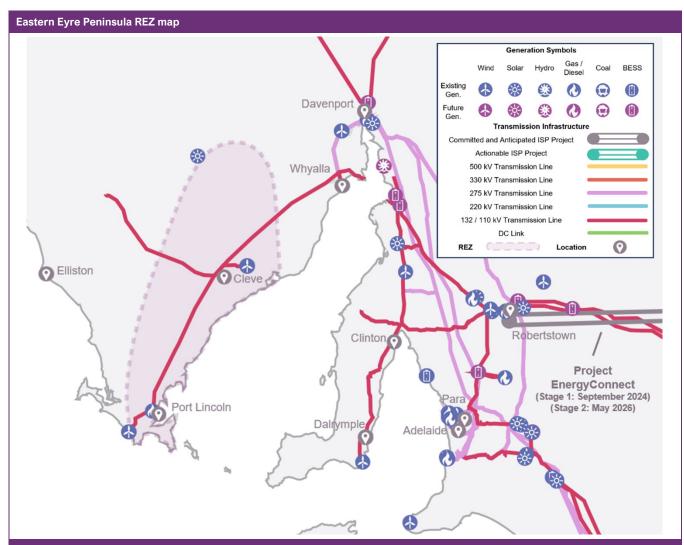
There is no hosting capacity provided by the jurisdictional planning body which directly applies to this REZ. AEMO will work with the relevant parties to understand the hosting capacity for future publications.

Resource metrics					
Resource	Solar	Wi	ind		
Resource Quality	Α	E			
Renewable Potential (MW)	3,400		-		
Climate hazard					
Temperature score	Е	Bushfire score	С		

Marginal loss factors

Marginal Loss Factor		
Technology	Voltage (kV)	2024-25 MLF
-	-	-

Congestion information – calendar year 2023						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
-	-	-	-			


VRE semi-sche	duled curtailment –	calendar year 2023	3			
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
-	-	-				-
VRE curtailmen	t – ISP forecast					
	20	25	20	026	20	27
Scenario	Curtailment Economic offloading		Curtailment	Economic offloading	Curtailment	Economic offloading
Step Change	-	-	-	-	-	-

ISP forecast

			:	Solar PV (MW)			Wind (MW)					
VRE outloo	k	Existing/	Projected					Existing/	Projected				
		committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
Step Change		-	-	-	-	-	-	-		-		-	
Transmissi	on a	ccess expans	ion for S	tep Chan	ge								
	600) ———											
		_											
Installed Capacity (MW)	500) ———									,		
	400) ———											
apacit	300) ———											
led C													
nstal	200) ———											
_	100) ———											_
	() ———											
		2024			2025-26	_	2026-2		2027-28		2028	3-29	
			Existing S ISP wind				xisting Wi	nd nsmission		ISP solar Transmis		aet	
			.c. wiild	10.00001			Albung da	10111001011			0.011 10100	401	

A5.9 S8 – Eastern Eyre Peninsula

RF7 information

Overview

The Eastern Eyre Peninsula REZ has grade C wind resource quality. The Eyre Peninsula Link, completed in February 2023,replaced the existing Cultana—Yadnarie—Port Lincoln 132 kV single-circuit line with a new double-circuit 132 kV line. The section between Cultana to Yadnarie is built to operate at 275 kV, however, it is initially energised at 132 kV.

Network Transfer Capability

The existing network capacity of this REZ is 300 MW (subject to the capacity of the 275/132 kV transformers). The capability of this zone to accommodate new generation is subject to the MN1-SA mid-north and NSA1 northern group constraint.⁹

Jurisdictional body

The Eastern Eyre Peninsula REZ's jurisdictional planning body is ElectraNet.

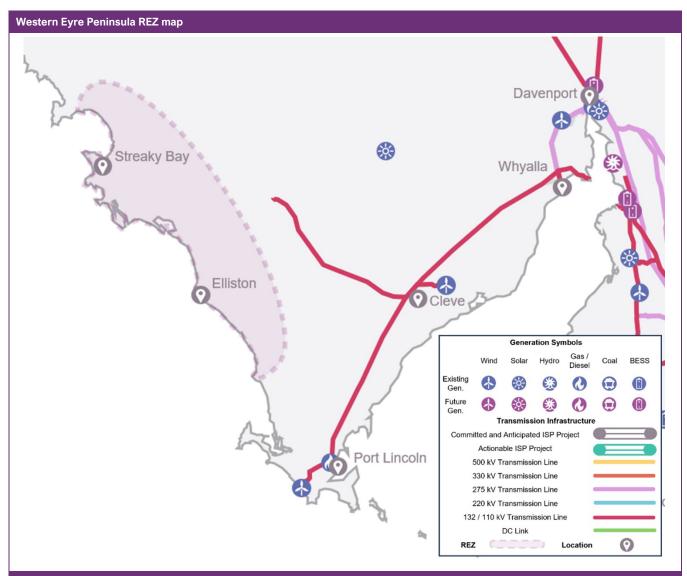
Generation Hosting capacity or access rights

⁹ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

Resource metrics						
Resource	Solar	Wi	nd			
Resource Quality	D	С				
Renewable Potential (MW)	5,000	2,3	300			
Climate hazard						
Temperature score	D	Bushfire score	D			

Marginal Loss Factor						
Technology	Voltage (kV)	2024-25 MLF				
Wind	33	0.9162				
wina	132	0.9309				

Congestion information – calendar year 2023						
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation			
S^NIL_CRK+MTM_95	35.8	51,176.8	Eyre Peninsula non-synchronous generation. Note, this constraint has been archived. It is no longer required due to the completion of Eyre Peninsula Link in 2023.			


VRE semi-sche	duled curtailment –	calendar year 2023	3			
DUID	Generate	Generator name		Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)
CATHROCK	Cathedral Rocks		66	6.1	1.2	10,107
MTMILLAR	Mt Millar Wind Farm		70	9.0	2.0	17,458
VRE curtailmer	nt – ISP forecast					
	20	25	20	026	20	27
Scenario	Curtailment	Economic offloading	Curtailment	Economic offloading	Curtailment	Economic offloading
Step Change	-	9%	-	10%	-	5%

ISP forecast

			Solar PV	(MW)	Wind (MW)								
VRE outloo				Projected			Existing/	Projected					
	commit		2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	202	
Step Change	-	-	-	-	-	-	132	-	-	-	-	100	
Transmissi	on access ex	pansion for	Step Chan	ge									
	350 —											_	
	300 —											_	
§	250												
Installed Capacity (MW)										"////			
ıpaci	200 ——												
ed Ca	150 ———										<u>////</u>	_	
stalle	100 —											_	
97												_	
<u>=</u>	50 ———												
<u>n</u>													
<u>z</u>	0 ——	2024-25		2025-26		2026-2	27	2027-28		2028	-29	_	
ın	0 —	Existing	Solar	2025-26		xisting Wir	nd	mm	ISP solar	forecast		_	
sul	0 —		Solar	2025-26		xisting Wir		mm				_	

A5.10 S9 – Western Eyre Peninsula

REZ information

Overview

The Western Eyre Peninsula REZ shares the same electrical network as the Eastern Eyre Peninsula. It has grade C solar and wind resource quality. There are no generators currently connected or committed within this REZ.

Network Transfer Capability

The network transfer capability of this REZ is not listed in the ISP. The capability of this zone to accommodate new generation is subject to the MN1-SA mid-north and NSA1 northern group constraint. ¹⁰

Jurisdictional body

The Western Eyre Peninsula REZ's jurisdictional planning body is ElectraNet.

Generation Hosting capacity or access rights

¹⁰ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

Resource metrics								
Resource Solar Wind								
Resource Quality	С	С						
Renewable Potential (MW)	4,000	1,500						
Climate hazard								
Temperature score	D	Bushfire score	С					

Marginal Loss Factor									
Technology	Voltage (kV)	2024-25 MLF							
-	-	-							

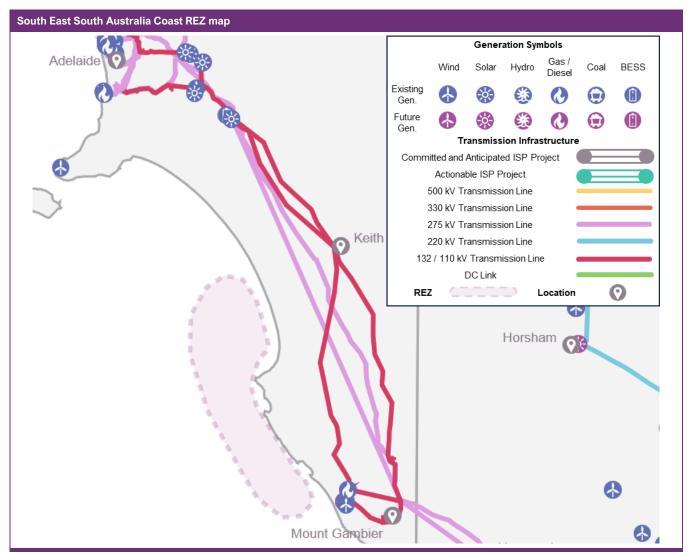
Congestion and curtailment

Congestion information – calendar year 2023										
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation							
-	-	-	-							

VRE semi-scheduled curtailment – calendar year 2023										
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)				
-	-		-	-	-	-				
VRE curtailment – ISP forecast										
	20	25	20)26	2027					
Scenario	Curtailment	Economic offloading	Curtailment Economic offloading		Curtailment	Economic offloading				
Step Change	-	-	-	-	-	-				

ISP forecast

ISP forecast												
	Solar PV (MW)					Wind (MW)						
VRE outlook	Existing/		Projected					Projected				
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
Step Change	-	-	-	-	-	-	-	-	-	-	-	-


Transmission access expansion for Step Change

There is no existing, committed, or anticipated VRE projects for this REZ, and the modelling outcomes for *Progressive Change* and *Step Change* scenarios did not project any additional VRE for this REZ.

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability
-	-	-	-

A5.11 S10 – South East South Australia Coast

RF7 information

Overview

The South East South Australia Coast REZ has been identified for offshore wind resource potential in relatively shallow waters close to shore, with a proposed connection point near to the South East South Australia (S1) REZ. There is currently interest in this area of approximately 600 MW, but projects have not developed sufficiently at this stage to be considered anticipated.

Network Transfer Capability

The South East South Australia Coast REZ is proposed to connect to an offshore collection node in the South East South Australia REZ. The network limit for this REZ is included as part of the SESA-CSA sub-regional limit. There are no augmentation options specifically for this REZ. The associated augmentations are the VIC-SESA and SESA-CSA flow path augmentations. ¹¹

Jurisdictional body

The South East South Australia Coast REZ's jurisdictional planning body is ElectraNet.

Generation Hosting capacity or access rights

¹¹ See 'Build Limits' tab of the Draft 2024 Inputs and Assumptions Workbook, at https://aemo.com.au/-/media/files/major-publications/isp/2023/2023-iasr-assumptions-workbook.xlsx?la=en.

Resource metrics							
Resource	Offshore Wind (fixed) Offshore Wind (floating)						
Resource Quality	А	A					
Renewable Potential (MW)	20,428	7,032					
Climate hazard							
Temperature score	D	Bushfire score	D				

Marginal Loss Factor								
Technology	Voltage (kV)	2024-25 MLF						
-	-	-						

Congestion and curtailment

Congestion information – calendar year 2023									
Constraint ID	Constraint ID Binding Marg hours value		Most affected generation						
-	-	-	-						

VRE semi-scheduled curtailment – calendar year 2023										
DUID	Generator name		Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)				
-	-		-	-	-	-				
VRE curtailment – ISP forecast										
	20	25	20)26	2027					
Scenario	Curtailment	Economic offloading	Curtailment Economic offloading		Curtailment	Economic offloading				
Step Change	-	-	-	-	-	-				

ISP forecast

ISP forecast												
	Solar PV (MW)					Wind (MW)						
VRE outlook	Existing/		Projected					Projected				
	committed/ anticipated	2025	2026	2027	2028	2029	committed/ anticipated	2025	2026	2027	2028	2029
Step Change	-	-	-	-	-	-	-	-	-	-	-	-

Transmission access expansion for Step Change

There is no existing, committed, anticipated VRE projects for this REZ and the modelling outcomes, for all scenarios and the offshore wind sensitivities, did not project any additional VRE for this REZ. Therefore, no VRE curtailment or transmission expansion occurs in this REZ.

Committed, Anticipated, and Actionable Transmission Projects	Timing	Status	Increase in network transfer capability	
-	-	-	-	

A5.12 Non-REZ

Congestion information – calendar year 2023							
Constraint ID	Binding hours	Marginal value (\$)	Most affected generation				
-	-	-	-				

VRE semi-scheduled curtailment – calendar year 2023							
DUID	Generator name	Maximum Capacity (MW)	Average curtailment (%)	Average curtailment (MW)	Curtailment (MWh)		
ADPPV1	Adelaide Desalination Plant	19	0.1	0.0	28		
BOWWPV1	Bolivar Waste Water Treatment Plant	6	4.4	0.0	419		
HVWWPV1	Happy Valley Water Treatment Plant	8	0.2	0.0	20		
STARHLWF	Starfish Hill Wind Farm	35	0.0	0.0	0		
TB2SF1	Tailem Bend 2 Hybrid Renewable Power Station	87	0.0	0.0	1		
TBSF1	Tailem Bend Solar Project 1	95	0.0	0.0	1		