AGENDA

1. Background
2. Candidate REZ definition and usage
 • What is a REZ, and how were they defined?
 • How REZ inputs influence the modelling process
3. Current REZ candidates
 • What’s changed since 2018 ISP and why?
 • Case Study – Western Victoria REZ
4. Next Steps
 • Actionable ISP
 • CoGaTI
5. Consultation Timeline
6. Questions
Background
Our changing energy environment
The Integrated System Plan (ISP) - a roadmap for the future

- Provides an integrated roadmap
- Maximises value to end consumers
- Aims to inform policy makers, investors, consumers, researchers and other energy stakeholders
ISP context

Integrated System Plan

ISP/RIT-T guidelines

Coordination of transmission & generation investment

Transmission planning & interconnection
Stakeholder engagement and consultation process to date

Deliverables
- **20 Mar** Submissions on forecasting and planning consultation
- **3 Apr** Briefing webinar to summarise inputs and assumptions submissions
- **12 Apr** Stakeholder workshop to explore scenarios and resolve issues
- **21 May** Consumer engagement approach and ISP workshop
- **3 Jun** ISP Scenario and Assumptions briefing
- **Date TBC** Final scenario and assumptions report published

Engagements and consultations
- **13 Aug** REZ briefing Webinar

Today
The objectives for today’s webinar are to:

- Provide background on candidate Renewable Energy Zone (REZ) definition and development
- Explain how REZs will be used within the 2019-20 ISP modelling
- Discuss REZ candidates for the 2019-20 ISP
Candidate REZ definition and usage
Renewable Energy Zones (REZs)

REZs are areas in the NEM where clusters of large-scale renewable energy can be developed to promote economies of scale in high-resource areas and capture geographic and technological diversity in renewable resources.

– ISP Consultation Paper (AEMO)
ISP modelling overview

Scenario demand and energy forecasts

Scenario drivers (LRET, emissions etc)

Candidate REZ and generation parameters

Potential transmission projects

Generation and Transmission Expansion Model

Generation Expansion

Transmission Expansion

Time Sequential Model

Dispatch Outcomes

Power system analysis
REZ inputs to model – snapshot

<table>
<thead>
<tr>
<th>Location</th>
<th>Wind generation limits (MW)</th>
<th>Solar PV plus Solar thermal Limits (MW)</th>
<th>Transmission-limited total build in the REZ</th>
<th>Indicative transmission expansion cost ($/MW Real 2019)</th>
<th>Additional generation capacity available (zero additional cost) in REZs due to the development of interconnectors</th>
<th>QNI Option 2</th>
<th>QNI Option 3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Far North Queensland</td>
<td>-</td>
<td>-</td>
<td>700</td>
<td>1.179</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>North Queensland Clean Energy Hub</td>
<td>2,320</td>
<td>6,955</td>
<td>3,982</td>
<td>1.273</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Northern Queensland</td>
<td>-</td>
<td>-</td>
<td>1,650</td>
<td>0.889</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isaac</td>
<td>465</td>
<td>1,395</td>
<td>3,500</td>
<td>0.684</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Barcaldine</td>
<td>475</td>
<td>1,435</td>
<td>4,000</td>
<td>0.952</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fitzroy</td>
<td>220</td>
<td>670</td>
<td>2,000</td>
<td>0.513</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Darling Downs</td>
<td>695</td>
<td>2,090</td>
<td>3,743</td>
<td>0.171</td>
<td>600</td>
<td>1,200</td>
<td>-</td>
</tr>
<tr>
<td>Southern New South Wales Tablelands</td>
<td>575</td>
<td>1,735</td>
<td>1,000</td>
<td>0.230</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Excerpt from AEMO 2019 Inputs and Assumptions Workbook
Candidate REZ assessment

- Environment
 - Resource quality
 - Resource diversity
 - Terrain

- Power system
 - Network limits
 - Potential upgrades
 - System Strength
 - MLF

- Planning
 - Existing land use
 - Cultural and Heritage
Current REZ candidates

+ Case Study of Western Victoria REZ
Case study – Western Victoria REZ
Regulatory process and preferred option

Note: This diagram is not to scale. Routes are yet to be confirmed and for illustrative purposes only.
Indicative project timeline

RIT-T
- Publish Project Assessment Draft Report (PADR)
- Key stakeholder engagement
- Consider submissions
- Publish Project Assessment Conclusions Report (PACR)

Tender
- Tender, negotiate and award contract
- Key stakeholder engagement

Development approvals
- Design
- Environmental and planning studies
- Community engagement

Construction
- Refine detailed design
- Construction and commissioning
- Community engagement – ongoing

2019

2025
Next Steps
Next steps

• ISP will identify an optimal development path for the power system, including:
 • transmission build/upgrades;
 • non-network solutions;
 • associated REZs.

Integrated System Plan

• ESB consulting on draft Rules later this year. It is proposed that the ISP will:
 • trigger and partially replace RIT-Ts; &
 • inform decision making by market participants (incl. VRE generators) & policy makers.
• Whole of system planning will help to overcome the current “chicken & egg” issues.

Converting the ISP into action

• AEMC’s Coordination of Generation and Transmission Investment review is exploring options to promote the efficient development of REZs.
• This review feeds into the ESB’s Post 2025 market design review.

COGATI
Consultation timeline
Proposed ISP milestones/engagements 2019-20

Legend:
- Publishing Dates
- RIT-T
- Public engagements

- REZ public briefing
- Preliminary outcomes briefing TBD
- Draft ISP published
- Final ISP published
- Public engagement on draft outcomes, development plan, REZ

July Aug Sept Oct Nov Dec Feb Mid 2020

- VNI RIT-T PADR published
- QNI RIT-T PADR Published
- Marinus Link PADR published
- AER determination on EnergyConnect
- VNI RIT-T PACR Published
Questions

Jonathon Geddes