

Marginal Loss Factors: Financial Year 2024-25 April 2024

A report for the National Electricity Market

Important notice

Purpose

The purpose of this publication is to detail the regional boundaries as the 'Regions Publication' under clause 2A.1.3 of the National Electricity Rules (Rules), and to inform registered participants, proponents and stakeholders of the 2024-25 interregional loss equations under clause 3.6.1 of the Rules and 2024-25 intra-regional loss factors under clause 3.6.2 of the Rules.

AEMO publishes this Marginal Loss Factors: Financial Year 2024-25 in accordance with clauses 3.6.2 (d1) and 2A.1.3 of the National Electricity Rules (Rules). This publication is generally based on information available to AEMO as at 1 March 2024 unless otherwise indicated.

Disclaimer

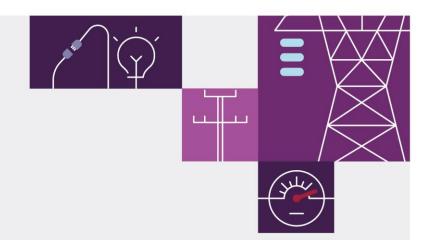
AEMO has made reasonable efforts to ensure the quality of the information in this publication but cannot guarantee that information, forecasts and assumptions are accurate, complete or appropriate for your circumstances.

Modelling work performed as part of preparing this publication inherently requires assumptions about future behaviours and market interactions, which may result in forecasts that deviate from future conditions. There will usually be differences between estimated and actual results, because events and circumstances frequently do not occur as expected, and those differences may be material.

This publication does not include all of the information that an investor, participant or potential participant in the national electricity market might require, and does not amount to a recommendation of any investment.

Anyone proposing to use the information in this publication (which includes information and forecasts from third parties) should independently verify its accuracy, completeness and suitability for purpose, and obtain independent and specific advice from appropriate experts.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this publication:


- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this publication; and
- are not liable (whether by reason of negligence or otherwise) for any statements, opinions, information or other matters contained in or derived from this publication, or any omissions from it, or in respect of a person's use of the information in this publication.

Acknowledgment

AEMO acknowledges the support, co-operation and contribution of all registered participants, proponents and stakeholders who provided the data and information used in this publication.

AEMO acknowledges the Traditional Owners of country throughout Australia and recognises their continuing connection to land, waters and culture. We pay respect to Elders past and present.

Copyright

© 2024 Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the copyright permissions on AEMO's website.

Version control

Version	Release date	Changes
1	02/4/2024	Final 2024-25 MLFs published

Introduction

This document sets out the financial year 2024-25 (2024-25) National Electricity Market (NEM) intra-regional loss factors, commonly referred to as marginal loss factors (MLFs), calculated under clause 3.6.2 of the National Electricity Rules (Rules). MLFs represent electrical transmission losses within each of the five regions in the NEM – Queensland, New South Wales, Victoria, South Australia, and Tasmania.

As well as the MLFs, this document provides the following information for 2024-25:

- Connection point transmission node identifiers (TNIs).
- Virtual transmission nodes (VTNs).
- NEM inter-regional loss factor equations and loss equations calculated under clause 3.6.1 of the Rules.

This document also serves as the Regions Publication under clause 2A.1.3 of the Rules, providing the following information for the 2024-25:

- · Region definitions.
- · Regional reference nodes (RRNs).
- · Region boundaries.

Loss factors apply for 2024-25 only, and should not be relied on as an indicator for future years.

Context

In recent years, supply and demand patterns in the NEM have been changing at an increasing rate, driven by new technology and a changing generation mix. This has led to large year-on-year changes in MLFs, particularly in areas of high renewable penetration that are electrically weak and remote from load centres.

The large year-on-year changes in MLFs demonstrate the ongoing need for comprehensive planning to minimise costs to consumers. All-of-system planning documents, such as the *Integrated System Plan* (ISP)¹, are critical in the provision of information to participants regarding the needs of, and changes occurring in, the power system.

Improving transparency

In January 2024, AEMO published a preliminary report on MLFs for 2024-25, intended to provide an early indication to stakeholders of both the potential direction and extent of movement in MLFs across the NEM between 2023-24 and 2024-25. The preliminary report was based on a limited study using some inputs from the 2023-24 study with generation profiles updated to reflect committed generation as of October 2023.

Structure of the report

This document has been structured as follows:

Section 1 outlines the MLFs for loads and generators in 2024-25.

¹ Available at https://www.aemo.com.au/energy-systems/major-publications/integrated-system-plan-isp.

- Section 2 summarises the key changes that have been observed in MLFs between 2023-24 and 2024-25.
- Section 3 outlines the inter-regional loss factor equations for 2024-25.
- Section 4 outlines the inter-regional loss equations for 2024-25.
- Section 5 outlines the Basslink, Murraylink and Terranora loss equations for 2024-25.
- Section 6 outlines the proportioning of inter-regional losses to regions for 2024-25.
- Section 7 defines the regions and regional reference nodes for 2024-25.
- Section 8 outlines the virtual transmission nodes for 2024-25.
- Appendix A1 provides a background to MLFs.
- Appendix A2 outlines the methodology, inputs, and assumptions that have been used to determine the MLFs for 2024-25.
- Appendix A3 outlines the impact of various technologies on volume weighted MLF outcomes.
- Appendix A4 outlines the impact of congestion on volume weighted MLF outcomes.

Review of calculation

AEMO applied a number of quality assurance steps when calculating the 2024-25 MLFs. These included engaging an independent consultant to review the quality and accuracy of the MLF calculation process. The consultant is satisfied that AEMO is appropriately applying the published Methodology based on the data provided by registered participants, historical market data, and AEMO's electricity consumption forecasts, and the process applied to the calculation of MLF values.

Changes since draft report

AEMO published a draft report on 2024-25 MLFs on 1 March 2024 and sought feedback from stakeholders.

AEMO also made a number of minor improvements to modelling compared to the study used for the draft report, following completion of calculation review.

Observations and trends

For the 2024-25 MLF study, the primary observation is the projected impact of thermal generation behaviour driven by variations in congestion, demand forecasts, and the continual addition of generation capacity in the form of solar and wind.

Further information on observations and trends is detailed in Section 2.4 of this report.

Contents

Introdi	uction	4
1	Marginal loss factors by region	9
1.1	Queensland marginal loss factors	9
1.2	New South Wales marginal loss factors	16
1.3	Victoria marginal loss factors	25
1.4	South Australia marginal loss factors	30
1.5	Tasmania marginal loss factors	35
2	Changes in marginal loss factors	39
2.1	Marginal loss factors in the NEM	39
2.2	Reasons marginal loss factors change	39
2.3	Changes between the preliminary 2024-25 MLFs and the final 2024-25 MLFs	40
2.4	Changes between 2023-24 MLFs and 2024-25 MLFs	40
3	Inter-regional loss factor equations	50
4	Inter-regional loss equations	54
5	Basslink, Murraylink, Terranora loss equations	57
5.1	Basslink	57
5.2	Murraylink	58
5.3	Terranora	60
6	Proportioning of inter-regional losses to regions	63
7	Regions and regional reference nodes	64
7.1	Regions and Regional Reference Nodes	64
7.2	Region boundaries	64
8	Virtual transmission nodes	66
8.1	New South Wales virtual transmission nodes	66
8.2	South Australia virtual transmission nodes	66
8.3	Tasmania virtual transmission nodes	66
A1.	Background to marginal loss factors	67
A1.1	Rules requirements	67
A1.2	Application of marginal loss factors	68
A2.	Methodology, inputs, and assumptions	70
A2.1	Marginal loss factors calculation methodology	70
A2.2	Load data requirements for the MLF calculation	70
A2.3	Generation data requirements for the MLF calculation	71
A2.4	Intra-regional limit management	74

A2.5	Netv	vork representation in the marginal loss factors calculation	76
A2.6	Inter	connector capacity	78
A2.7	Calc	culation of MLFs	79
A3.	Impa	act of technology on MLF outcomes	80
A4.	Impa	act of congestion on MLF outcomes	82
Glossa	ary		83
Tab	oles		
Table	1	Queensland loads	9
Table		Queensland generation	12
Table		New South Wales loads	16
Table	4	New South Wales generation	20
Table	5	ACT loads	24
Table	6	ACT generation	24
Table	7	Victoria loads	25
Table	8	Victoria generation	27
Table	9	South Australia loads	30
Table	10	South Australia generation	32
Table	11	Tasmania loads	35
Table	12	Tasmania generation	37
Table	13	Preliminary vs draft/final study variations	40
Table	14	Queensland sub-region year-on-year average MLF variation	42
Table	15	New South Wales sub-region year-on-year average MLF variation	44
Table	16	Victoria sub-region year-on-year average MLF variation	46
Table	17	South Australia sub-region year-on-year average MLF variation	48
Table	18	Tasmania sub-region year-on-year average MLF variation	49
Table	19	South Pine 275 referred to Sydney West 330 MLF versus New South Wales to Queensland flow coefficient statistics	51
Table	20	Sydney West 330 referred to Thomastown 66 MLF versus Victoria to New South Wales flow coefficient statistics	52
Table	21	Torrens Island 66 referred to Thomastown 66 MLF versus Victoria to South Australia flow coefficient statistics	53
Table	22	Regression statistics for Murraylink	58
Table	23	Regression statistics for Terranora	61
Table	24	Factors for inter-regional losses	63
Table	25	Regions and Regional Reference Nodes	64

Table 26	New South Wales virtual transmission nodes	66
Table 27	Tasmania virtual transmission nodes	66
Table 28	Operational consumption	71
Table 29	Inter-regional limits	78
Table 30	Impact of technology on MLF outcomes	81
Figure	es	
- : 4		44
Figure 1	2023-24 vs 2024-25 MLF interconnector flow projections	41
Figure 2	Queensland changes compared to 2024-25 MLFs	42
Figure 3	New South Wales changes compared to 2024-25 MLFs	44
Figure 4	Victoria changes compared to 2024-25 MLFs	46
Figure 5	South Australia changes to 2024-25 MLFs	47
Figure 6	Tasmania changes to 2024-25 MLFs	49
Figure 7	MLF (South Pine 275 referred to Sydney West 330)	51
Figure 8	MLF (Sydney West 330 referred to Thomastown 66)	52
Figure 9	MLF (Torrens Island 66 referred to Thomastown 66)	53

Average losses for New South Wales – Queensland notional link

Average losses for Victoria - New South Wales notional link

Murraylink MLF (Torrens Island 66 referred to Thomastown 66)

Average losses for Murraylink interconnector (Torrens Island 66 referred to Thomastown

Average losses for Terranora interconnector (South Pine 275 referred to Sydney West

Terranora interconnector MLF (South Pine 275 referred to Sydney West 330)

Average losses for Victoria – South Australia notional link

Time of day average economic curtailment for 2024-25

Time-of-day impact of technology on MLF outcomes

Basslink loss factor model

MLFs greater than 1.0 simplified

MLFs less than 1.0 simplified

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

330)

55

55

56

57

59

60

62

62

68

69

73

81

1 Marginal loss factors by region

This section shows the intra-regional loss factors, commonly known as marginal loss factors (MLFs), for financial year 2024-25, for every existing load or generation transmission connection point (identified by transmission node identifier [TNI] or dispatchable unit identifier [DUID]) in each National Electricity Market (NEM) region. As required by clause 3.6.2(f) of the National Electricity Rules (Rules), these MLFs have been calculated in accordance with AEMO's published Forward Looking Loss Factor Methodology (Methodology).

The generation profiles for committed but not yet NEM-registered projects are included in the MLF calculation, however AEMO does not publish MLFs for connection points relating to projects whose registration has not been completed as at the date of publication. AEMO will publish MLFs for those connection points following registration. MLF updates and additions that are developed throughout the year will be included in the updated Final Marginal Loss Factors for the 2024-25 Financial Year reports and spreadsheets, which are also published on AEMO's website² throughout the financial year.

1.1 Queensland marginal loss factors

Table 1 Queensland loads

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Abermain	33	QABM	1.0005	0.9985
Abermain - Dual MLF (Generation)	110	QABR	0.9997	0.9985
Abermain - Dual MLF (Load)	110	QABR	0.9992	0.9985
Alan Sherriff	132	QASF	0.9933	0.9845
Algester	33	QALG	1.0176	1.0174
Alligator Creek	132	QALH	0.9769	0.9714
Alligator Creek	33	QALC	0.9807	0.9788
Ashgrove West	110	QCBW	1.0125	1.0126
Ashgrove West	33	QAGW	1.0152	1.0154
Belmont	110	QВМН	1.0127	1.0128
Belmont Wecker Road	33	QBBS	1.0146	1.0146
Biloela	66/11	QBIL	0.9319	0.9261
Blackstone	110	QBKS	0.9984	0.9980
Blackwater	132	QBWH	0.9717	0.9655
Blackwater	66/11	QBWL	0.9749	0.9722
Bluff	132	QBLF	0.9751	0.9663
Bolingbroke	132	QBNB	0.9660	0.9571
Bowen North	66	QBNN	0.9707	0.9616
Boyne Island	132	QBOL	0.9603	0.9485
Boyne Island	275	QBOH	0.9621	0.9496

² At https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Security-and-reliability/Loss-factor-and-regional-boundaries.

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Braemar – Kumbarilla Park	275	QBRE	0.9742	0.9723
Bulli Creek (Essential Energy)	132	QBK2	0.9807	0.9773
Bulli Creek (Waggamba)	132	QBLK	0.9807	0.9773
Bundamba	110	QBDA	1.0001	0.9987
Burton Downs	132	QBUR	0.9837	0.9716
Cairns	22	QCRN	0.9875	0.9760
Cairns City	132	QCNS	0.9810	0.9684
Callemondah (Rail)	132	QCMD	0.9525	0.9395
Calliope River	132	QCAR	0.9487	0.9386
Cardwell	22	QCDW	0.9865	0.9818
Chinchilla	132	QCHA	0.9719	0.9692
Clare	66	QCLR	1.0019	0.9878
Collinsville Load	33	QCOL	0.9609	0.9503
Columboola	132	QCBL	0.9760	0.9774
Columboola 132 (Bellevue LNG load)	132	QCBB	0.9771	0.9784
Coppabella (Rail)	132	QCOP	0.9885	0.9844
Dan Gleeson	66	QDGL	0.9935	0.9881
Duaringa	132	QDRG	0.9567	0.9627
Dysart	132	QDYS	0.9880	0.9779
Eagle Downs Mine	132	QEGD	0.9831	0.9750
Edmonton	22	QEMT	0.9989	0.9878
Egans Hill	66	QEGN	0.9389	0.9318
El Arish	22	QELA	0.9918	0.9822
Garbutt	66	QGAR	0.9941	0.9883
Gin Gin	132	QGNG	0.9680	0.9621
Gladstone South	66/11	QGST	0.9455	0.9411
Goodna	33	QGDA	1.0047	1.0042
Goonyella Riverside Mine	132	QGYR	1.0012	0.9885
Grantleigh (Rail)	132	QGRN	0.9359	0.9264
Greenland 132	132	QGLD	0.9875	0.9735
Gregory (Rail)	132	QGRE	0.9517	0.9469
Ingham	66	QING	1.0046	0.9903
Innisfail	22	QINF	0.9976	0.9841
Invicta Load	132	QINV	0.9314	0.9317
Kamerunga	22	QKAM	0.9933	0.9837
Kemmis	66	QEMS	0.9817	0.9704
King Creek	132	QKCK	0.9647	0.9569
Larcom Creek	275	QLCH	0.9636	0.9261
Lilyvale	66	QLIL	0.9538	0.9486
Lilyvale (Barcaldine)	132	QLCM	0.9568	0.9564

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Loganlea	110	QLGH	1.0115	1.0118
Loganlea	33	QLGL	1.0138	1.0144
Mackay	33	QMKA	0.9783	0.9735
Middle Ridge (Energex)	110	QMRX	0.9860	0.9886
Middle Ridge (Ergon)	110	QMRG	0.9860	0.9886
Mindi (Rail)	132	QMND	0.9609	0.9527
Molendinar	110	QMAR	1.0130	1.0132
Molendinar	33	QMAL	1.0124	1.0127
Moranbah (Mine)	66	QMRN	0.9981	0.9898
Moranbah (Town)	11	QMRL	0.9928	0.9852
Moranbah Substation	132	QMRH	0.9933	0.9853
Moura	66/11	QMRA	0.9496	0.9443
Mt McLaren (Rail)	132	QMTM	0.9926	0.9835
Mudgeeraba	110	QMGB	1.0134	1.0126
Mudgeeraba	33	QMGL	1.0147	1.0137
Murarrie (Belmont)	110	QMRE	1.0123	1.0129
Nebo	11	QNEB	0.9579	0.9515
Newlands	66	QNLD	0.9926	0.9809
North Goonyella	132	QNGY	0.9993	0.9859
Norwich Park (Rail)	132	QNOR	0.9753	0.9631
Oakey	110	QOKT	0.9858	0.9883
Oonooie (Rail)	132	QOON	0.9788	0.9743
Orana LNG	275	QORH	0.9718	0.9715
Palmwoods	132	QPWD	1.0145	1.0130
Pandoin	132	QPAN	0.9353	0.9267
Pandoin	66	QPAL	0.9342	0.9294
Peak Downs (Rail)	132	QPKD	0.9986	0.9878
Pioneer Valley	66	QPIV	0.9922	0.9886
Proserpine	66	QPRO	0.9946	0.9878
Queensland Alumina Ltd (Gladstone South)	132	QQAH	0.9568	0.9445
Queensland Nickel (Yabulu)	132	QQNH	0.9783	0.9716
Raglan	275	QRGL	0.9428	0.9311
Redbank Plains	11	QRPN	1.0033	1.0054
Richlands	33	QRLD	1.0155	1.0158
Rockhampton	66	QROC	0.9547	0.9325
Rocklea (Archerfield)	110	QRLE	1.0054	1.0054
Ross	132	QROS	0.9776	0.9716
Runcorn	33	QRBS	1.0178	1.0180
South Pine	110	QSPN	1.0045	1.0045
Stony Creek	132	QSYC	0.9829	0.9727

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Sumner	110	QSUM	1.0065	1.0064
Tangkem (Dalby)	110	QTKM	0.9864	0.9892
Tarong	66	QTRL	0.9720	0.9712
Teebar Creek	132	QTBC	0.9869	0.9816
Tennyson	33	QTNS	1.0098	1.0101
Tennyson (Rail)	110	QTNN	1.0076	1.0078
Townsville East	66	QTVE	0.9865	0.9772
Townsville South	66	QTVS	0.9893	0.9778
Townsville South (KZ)	132	QTZS	1.0159	0.9979
Tully	22	QTLL	1.0262	1.0063
Turkinje	66	QTUL	1.0142	1.0029
Turkinje (Craiglie)	132	QTUH	1.0167	1.0068
Wandoan South	132	QWSH	0.9879	0.9897
Wandoan South (NW Surat)	275	QWST	0.9865	0.9890
Wandoo (Rail)	132	QWAN	0.9646	0.9554
Wivenhoe Pump	275	QWIP	1.0001	0.9994
Woolooga (Energex)	132	QWLG	0.9852	0.9800
Woolooga (Ergon)	132	QWLN	0.9852	0.9800
Woree	132	QWRE	0.9892	0.9777
Wotonga (Rail)	132	QWOT	0.9914	0.9818
Wycarbah	132	QWCB	0.9346	0.9249
Yarwun – Boat Creek (Ergon)	132	QYAE	0.9485	0.9369
Yarwun – Rio Tinto	132	QYAR	0.9483	0.9363

Table 2 Queensland generation

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Baking Board Solar Farm (Chinchilla Solar Farm)	132	BAKING1	QCHS1C	QCHS	0.9442	0.9598
Barcaldine PS – Lilyvale	132	BARCALDN	QBCG	QBCG	0.9331	0.9380
Barcaldine Solar at Lilyvale (132)	132	BARCSF1	QLLV1B	QLLV	0.9370	0.9150
Barron Gorge Power Station Unit 1	132	BARRON-1	QBGH1	QBGH	0.9556	0.9590
Barron Gorge Power Station Unit 2	132	BARRON-2	QBGH2	QBGH	0.9556	0.9590
Bluegrass Solar Farm	132	BLUEGSF1	QCBS1B	QCBS	0.9433	0.9546
Bouldercombe BESS (Generation)	132	BBATTERY	QBCB1B	QBCB	0.9166	0.9198
Bouldercombe BESS (Load)	132	BBATRYL1	QBCB2B	QBCB	0.9528	0.9271
Braemar PS Unit 1	275	BRAEMAR1	QBRA1	QBRA	0.9627	0.9617
Braemar PS Unit 2	275	BRAEMAR2	QBRA2	QBRA	0.9627	0.9617
Braemar PS Unit 3	275	BRAEMAR3	QBRA3	QBRA	0.9627	0.9617
Braemar Stage 2 PS Unit 5	275	BRAEMAR5	QBRA5B	QBRA	0.9627	0.9617
Braemar Stage 2 PS Unit 6	275	BRAEMAR6	QBRA6B	QBRA	0.9627	0.9617

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Braemar Stage 2 PS Unit 7	275	BRAEMAR7	QBRA7B	QBRA	0.9627	0.9617
Browns Plains Landfill Gas PS	110	BPLANDF1	QLGH3B	QLGH	1.0115	1.0118
Callide A PS Unit 4	132	CALL_A_4	QCAA4	QCAA	0.9284	0.9138
Callide A PS Unit 4 Load	132	CALLNL4	QCAA2	QCAA	0.9284	0.9138
Callide B PS Unit 1	275	CALL_B_1	QCAB1	QCAB	0.9188	0.9149
Callide B PS Unit 2	275	CALL_B_2	QCAB2	QCAB	0.9188	0.9149
Callide C PS Unit 3	275	CPP_3	QCAC3	QCAC	0.9160	0.9096
Callide C PS Unit 4	275	CPP_4	QCAC4	QCAC	0.9160	0.9096
Callide PS Load	132	CALLNL1	QCAX	QCAX	0.9270	0.9181
Childers Solar Farm	132	CHILDSF1	QTBS1C	QTBS	0.9828	0.9704
Chinchilla BESS (Generation)	275	CHBESSG1	QWDB1C	QWDB	0.9747	0.9588
Chinchilla BESS (Load)	275	CHBESSL1	QWDB2C	QWDB	0.9630	0.9750
Clare Solar Farm	132	CLARESF1	QCLA1C	QCLA	0.9116	0.8981
Clermont Solar Farm	132	CLERMSF1	QLLV3C	QLLV	0.9370	0.9150
Collinsville Solar Farm	33	CSPVPS1	QCOS1C	QCOS	0.9356	0.9132
Columboola Solar Farm	132	COLUMSF1	QCBR1C	QCBR	0.9718	0.9746
Columboola – Condamine PS	132	CPSA	QCND1C	QCND	0.9729	0.9731
Coopers Gap Wind Farm	275	COOPGWF1	QCPG1C	QCPG	0.9672	0.9658
Darling Downs PS	275	DDPS1	QBRA8D	QBRA	0.9627	0.9617
Darling Downs Solar Farm	275	DDSF1	QBRS1D	QBRS	0.9755	0.9762
Daydream Solar Farm	33	DAYDSF1	QCCK1D	QCCK	0.9306	0.9098
Dulacca Wind Farm	132	DULAWF1	QCBF1D	QCBF	0.9770	0.9776
Edenvale Solar Park	275	EDENVSF1	QORS1E	QORS	0.9707	0.9720
Emerald Solar Farm	66	EMERASF1	QLIS1E	QLIS	0.9331	0.9111
Gangarri Solar Farm	132	GANGARR1	QWSS1G	QWSS	0.9788	0.9837
German Creek Generator	66	GERMCRK	QLIL2	QLIL	0.9538	0.9486
Gladstone PS (132 kV) Unit 3	132	GSTONE3	QGLD3	QGLL	0.9410	0.9323
Gladstone PS (132 kV) Unit 4	132	GSTONE4	QGLD4	QGLL	0.9410	0.9323
Gladstone PS (132kV) Load	132	GLADNL1	QGLL	QGLL	0.9410	0.9323
Gladstone PS (275 kV) Unit 1	275	GSTONE1	QGLD1	QGLH	0.9403	0.9329
Gladstone PS (275 kV) Unit 2	275	GSTONE2	QGLD2	QGLH	0.9403	0.9329
Gladstone PS (275 kV) Unit 5	275	GSTONE5	QGLD5	QGLH	0.9403	0.9329
Gladstone PS (275 kV) Unit 6	275	GSTONE6	QGLD6	QGLH	0.9403	0.9329
Grosvenor PS At Moranbah 66 No 1	66	GROSV1	QMRN2G	QMRV	0.9907	0.9821
Grosvenor PS At Moranbah 66 No 2	66	GROSV2	QMRV1G	QMRV	0.9907	0.9821
Hamilton Solar Farm	33	HAMISF1	QSLD1H	QSLD	0.9305	0.9060
Haughton Solar Farm	275	HAUGHT11	QHAR1H	QHAR	0.9332	0.9151
Hayman Solar Farm	33	HAYMSF1	QCCK2H	QCCK	0.9306	0.9098

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Hughenden Solar Farm	132	HUGSF1	QROG2H	QROG	0.9385	0.9222
Invicta Sugar Mill	132	INVICTA	QINV1I	QINV	0.9314	0.9317
Isis CSM	132	ICSM	QGNG1I	QTBC	0.9869	0.9816
Kaban Wind Farm	275	KABANWF1	QTMW1K	QTMW	0.9605	0.9575
Kareeya PS Unit 1	132	KAREEYA1	QKAH1	QKYH	0.9642	0.9559
Kareeya PS Unit 2	132	KAREEYA2	QKAH2	QKYH	0.9642	0.9559
Kareeya PS Unit 3	132	KAREEYA3	QKAH3	QKYH	0.9642	0.9559
Kareeya PS Unit 4	132	KAREEYA4	QKAH4	QKYH	0.9642	0.9559
Kennedy Energy Park Battery (Generation)	132	KEPBG1	QROW3K	QROW	0.9703	0.9667
Kennedy Energy Park Battery (Load)	132	KEPBL1	QROW4K	QROW	0.9703	0.9667
Kennedy Energy Park Solar Farm	132	KEPSF1	QROW2K	QROW	0.9703	0.9667
Kennedy Energy Park Wind Farm	132	KEPWF1	QROW1K	QROW	0.9703	0.9667
Kidston Solar Farm	132	KSP1	QROG1K	QROG	0.9385	0.9222
Kogan Creek PS	275	KPP_1	QBRA4K	QWDN	0.9692	0.9673
Koombooloomba	132	KAREEYA5	QKYH5	QKYH	0.9642	0.9559
Lilyvale Solar Farm	33	LILYSF1	QBDR1L	QBDR	0.9295	0.9064
Longreach Solar Farm	132	LRSF1	QLLV2L	QLLV	0.9370	0.9150
Maryrorough Solar Farm (Brigalow Solar Farm)	110	MARYRSF1	QMRY2M	QMRY	0.9847	0.9914
Middlemount Sun Farm	66	MIDDLSF1	QLIS2M	QLIS	0.9331	0.9111
Millmerran PS Unit 1	330	MPP_1	QBCK1	QMLN	0.9797	0.9763
Millmerran PS Unit 2	330	MPP_2	QBCK2	QMLN	0.9797	0.9763
Moranbah Generation	11	MORANBAH	QMRL1M	QMRL	0.9928	0.9852
Moranbah North PS	66	MBAHNTH	QMRN1P	QMRN	0.9981	0.9898
Mount Emerald Wind farm	275	MEWF1	QWKM1M	QWKM	0.9527	0.9472
Moura Solar Farm	132	MOUSF1	QMRR1M	QMRR	0.9319	0.9081
Mt Stuart PS Unit 1	132	MSTUART1	QMSP1	QMSP	0.9471	0.9164
Mt Stuart PS Unit 2	132	MSTUART2	QMSP2	QMSP	0.9471	0.9164
Mt Stuart PS Unit 3	132	MSTUART3	QMSP3M	QMSP	0.9471	0.9164
Oakey 1 Solar Farm	110	OAKEY1SF	QTKS10	QTKS	0.9810	0.9869
Oakey 2 Solar Farm	110	OAKEY2SF	QTKS2O	QTKS	0.9810	0.9869
Oakey PS Unit 1	110	OAKEY1	QOKY1	QOKY	0.9572	0.9628
Oakey PS Unit 2	110	OAKEY2	QOKY2	QOKY	0.9572	0.9628
Oaky Creek 2	66	OAKY2	QLIL3O	QLIL	0.9538	0.9486
Oaky Creek Generator	66	OAKYCREK	QLIL1	QLIL	0.9538	0.9486
Rocky Point Gen (Loganlea 110kV)	110	RPCG	QLGH2	QLGH	1.0115	1.0118
Roma PS Unit 7 – Columboola	132	ROMA_7	QRMA7	QRMA	0.9643	0.9643
Roma PS Unit 8 – Columboola	132	ROMA_8	QRMA8	QRMA	0.9643	0.9643
Ross River Solar Farm	132	RRSF1	QROG3R	QROG	0.9385	0.9222

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Rugby Run Solar Farm	132	RUGBYR1	QMPL1R	QMPL	0.9397	0.9185
Stanwell PS Load	132	STANNL1	QSTX	QSTX	0.9317	0.9265
Stanwell PS Unit 1	275	STAN-1	QSTN1	QSTN	0.9218	0.9181
Stanwell PS Unit 2	275	STAN-2	QSTN2	QSTN	0.9218	0.9181
Stanwell PS Unit 3	275	STAN-3	QSTN3	QSTN	0.9218	0.9181
Stanwell PS Unit 4	275	STAN-4	QSTN4	QSTN	0.9218	0.9181
Stapylton	110	STAPYLTON1	QLGH4S	QLGH	1.0115	1.0118
Sun Metals Solar Farm	132	SMCSF1	QTZS1S	QTZS	1.0159	0.9979
Sunshine Coast Solar Farm	132	VALDORA1	QPWD1S	QPWD	1.0145	1.0130
Susan River Solar Farm	132	SRSF1	QTBS2S	QTBS	0.9828	0.9704
Swanbank E GT	275	SWAN_E	QSWE	QSWE	0.9998	0.9987
Tarong North PS	275	TNPS1	QTNT	QTNT	0.9718	0.9712
Tarong PS Unit 1	275	TARONG#1	QTRN1	QTRN	0.9716	0.9707
Tarong PS Unit 2	275	TARONG#2	QTRN2	QTRN	0.9716	0.9707
Tarong PS Unit 3	275	TARONG#3	QTRN3	QTRN	0.9716	0.9707
Tarong PS Unit 4	275	TARONG#4	QTRN4	QTRN	0.9716	0.9707
Ti Tree BioReactor	33	TITREE	QABM1T	QABM	1.0005	0.9985
Wandoan BESS (Generation)	132	WANDBG1	QWSB1W	QWSB	0.9823	0.9751
Wandoan BESS (Load)	132	WANDBL1	QWSB2W	QWSB	0.9877	1.0020
Wandoan South Solar Farm 1	275	WANDSF1	QWSR1W	QWSR	0.9785	0.9832
Warwick Solar Farm 1	110	WARWSF1	QMRY3W	QMRY	0.9847	0.9914
Warwick Solar Farm 2	110	WARWSF2	QMRY4W	QMRY	0.9847	0.9914
Western Downs Green Power Hub	275	WDGPH1	QWDR1W	QWDR	0.9701	0.9712
Whitsunday Solar Farm	33	WHITSF1	QSLS1W	QSLS	0.9204	0.9010
Windy Hill Wind Farm	66	WHILL1	QTUL	QTUL	1.0142	1.0029
Wivenhoe Generation Unit 1	275	W/HOE#1	QWIV1	QWIV	0.9909	0.9900
Wivenhoe Generation Unit 2	275	W/HOE#2	QWIV2	QWIV	0.9909	0.9900
Wivenhoe Pump 1	275	PUMP1	QWIP1	QWIP	1.0001	0.9994
Wivenhoe Pump 2	275	PUMP2	QWIP2	QWIP	1.0001	0.9994
Woolooga Solar Farm	132	WOOLGSF1	QWLS1W	QWLS	0.9850	0.9736
Yabulu PS	132	YABULU	QTYP	QTYP	0.9549	0.9519
Yabulu Steam Turbine (Garbutt 66kV)	66	YABULU2	QGAR1	QYST	0.9482	0.9417
Yarranlea Solar Farm	110	YARANSF1	QMRY1Y	QMRY	0.9847	0.9914
Yarwun PS	132	YARWUN_1	QYAG1R	QYAG	0.9470	0.9349

1.2 New South Wales marginal loss factors³

Table 3 New South Wales loads

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Albury	132	NALB	0.9331	0.9464
Alexandria	33	NALX	1.0024	1.0024
Armidale	66	NAR1	0.9234	0.9224
Australian Newsprint Mill	132	NANM	0.9178	0.9446
BHP (Waratah)	132	NWR1	0.9932	0.9931
Balranald	22	NBAL	0.8692	0.9017
Beaconsfield North	132	NBFN	1.0019	1.0021
Beaconsfield South	132	NBFS	1.0020	1.0021
Belmore Park	132	NBM1	1.0023	1.0024
Belmore Park 11	11	NBMP	1.0038	1.0042
Beryl	66	NBER	0.9747	0.9851
Boambee South	132	NWST	0.9611	0.9566
Boggabri East	132	NBGE	0.9528	0.9463
Boggabri North	132	NBGN	0.9524	0.9457
Brandy Hill	11	NBHL	0.9981	0.9971
Brandy Hill (Essential Energy)	11	NBHX	0.9981	0.9971
Broken Hill	22	NBKG	0.8518	0.8844
Broken Hill	220	NBKH	0.8295	0.8710
Bunnerong	132	NBG1	1.0021	1.0025
Bunnerong	33	NBG3	1.0045	1.0047
Buronga	220	NBRG	0.8530	0.8982
Burrinjuck	132	NBU2	0.9441	0.9458
Campbell Street	11	NCBS	1.0023	1.0025
Campbell Street	132	NCS1	1.0023	1.0023
Canterbury	33	NCTB	1.0046	1.0047
Carlingford	132	NCAR	1.0010	1.0010
Casino	132	NCSN	0.9555	0.9532
Charmhaven	11	NCHM	0.9944	0.9942
Coffs Harbour	66	NCH1	0.9519	0.9488
Coleambally	132	NCLY	0.9073	0.9266
Cooma	66	NCMA	0.9614	0.9679
Cooma (AusNet Services)	66	NCM2	0.9614	0.9679
Cowra - Dual MLF (Generation)	66	NCW8	0.9971	0.9378

³ The New South Wales region includes the Australian Capital Territory (ACT). ACT generation and load are detailed separately for ease of reference.

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Cowra - Dual MLF (Load)	66	NCW8	0.9971	0.9713
Dapto (Endeavour Energy)	132	NDT1	0.9893	0.9888
Dapto (Essential Energy)	132	NDT2	0.9893	0.9895
Darlington Point	132	NDNT	0.9135	0.9371
Deniliquin	66	NDN7	0.9543	0.9720
Dorrigo	132	NDOR	0.9412	0.9336
Dunoon	132	NDUN	0.9684	0.9632
Far North VTN		NEV1	0.9791	0.9774
Finley	66	NFNY	0.9563	0.9687
Finley - Dual MLF (Generation)	132	NFN2	0.9625	0.9797
Finley - Dual MLF (Load)	132	NFN2	0.8650	0.9320
Forbes	66	NFB2	1.0018	1.0125
Gadara	132	NGAD	0.9501	0.9580
Glen Innes	66	NGLN	0.9295	0.9061
Gosford	33	NGSF	1.0031	1.0029
Gosford	66	NGF3	1.0025	1.0023
Grafton East 132	132	NGFT	0.9377	0.9329
Green Square	11	NGSQ	1.0045	1.0048
Griffith	33	NGRF	0.9247	0.9467
Gunnedah	66	NGN2	0.9687	0.9572
Haymarket	132	NHYM	1.0022	1.0022
Heron's Creek	132	NHNC	1.0218	1.0176
Holroyd	132	NHLD	1.0017	1.0018
Holroyd (Ausgrid)	132	NHLX	1.0017	1.0018
Homebush Bay	11	NHBB	1.0146	1.0150
Hurstville North	11	NHVN	1.0017	1.0020
Ilford	132	NLFD	0.9652	0.9622
Ingleburn	66	NING	0.9954	0.9958
Inverell	66	NNVL	0.9465	0.9157
Kemps Creek	330	NKCK	0.9937	0.9937
Kempsey	33	NKS3	0.9908	0.9871
Kempsey	66	NKS2	0.9728	0.9708
Kogarah	11	NKOG	1.0037	1.0040
Koolkhan	66	NKL6	0.9768	0.9733
Kurnell	132	NKN1	1.0005	1.0006
Lake Munmorah	132	NMUN	0.9859	0.9838
Lane Cove	132	NLCV	1.0114	1.0112
Liddell	33	NLD3	0.9694	0.9661
Lismore	132	NLS2	0.9742	0.9814

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Liverpool	132	NLP1	0.9998	0.9999
Macarthur	132	NMC1	0.9924	0.9929
Macarthur	66	NMC2	0.9926	0.9947
Macksville	132	NMCV	0.9768	0.9722
Macquarie Park	11	NMQP	1.0138	1.0221
Macquarie Park	33	NMQS	1.0104	1.0110
Manildra	132	NMLD	1.0136	1.0250
Marrickville	11	NMKV	1.0072	1.0071
Marulan (Endeavour Energy)	132	NMR1	1.0088	1.0095
Marulan (Essential Energy)	132	NMR2	1.0088	1.0095
Mason Park	132	NMPK	1.0118	1.0123
Meadowbank	11	NMBK	1.0149	1.0154
Molong	132	NMOL	1.0305	1.0428
Moree	66	NMRE	0.9628	0.9563
Morven	132	NMVN	0.9275	0.9476
Mt Piper	66	NMP6	0.9755	0.9752
Mudgee	132	NMDG	0.9796	0.9853
Mullumbimby	11	NML1	0.9680	0.9533
Mullumbimby	132	NMLB	0.9574	0.9471
Munmorah STS 33	33	NMU3	0.9912	0.9907
Munyang	11	NMY1	0.9795	0.9838
Munyang	33	NMYG	0.9795	0.9838
Murrumbateman	132	NMBM	0.9481	0.9545
Murrumburrah	66	NMRU	0.9573	0.9648
Muswellbrook	132	NMRK	0.9797	0.9774
Nambucca Heads	132	NNAM	0.9719	0.9685
Narrabri	66	NNB2	0.9911	0.9799
Newcastle	132	NNEW	0.9920	0.9926
Newcastle (Essential Energy)	132	NNEX	0.9920	0.9926
North of Broken Bay VTN		NEV2	0.9952	0.9950
Orange	66	NRGE	1.0434	1.0645
Orange North	132	NONO	1.0363	1.0589
Ourimbah	33	NORB	0.9996	0.9991
Ourimbah	66	NOR6	0.9991	0.9987
Ourimbah	132	NOR1	1.0000	0.9998
Panorama	66	NPMA	1.0285	1.0398
Parkes	132	NPKS	0.9901	1.0022
Parkes	66	NPK6	1.0292	1.0442
Peakhurst	33	NPHT	1.0009	1.0013

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Potts Hill 11	11	NPHL	1.0023	1.0056
Potts Hill 132	132	NPO1	1.0024	1.0030
Pt Macquarie	33	NPMQ	1.0159	1.0105
Queanbeyan 132	132	NQBY	0.9711	0.9861
Raleigh	132	NRAL	0.9631	0.9611
Ravine	330	NRVN	0.9356	0.9507
Regentville	132	NRGV	0.9987	0.9986
Riverina 415V	0.42	NRVA	0.9113	0.9376
Rockdale (Ausgrid)	11	NRKD	1.0039	1.0040
Rookwood Road	132	NRWR	1.0022	1.0028
Rose Bay	11	NRSB	1.0051	1.0053
Snowy Adit	132	NSAD	0.9726	0.9771
Somersby	11	NSMB	1.0035	1.0033
South of Broken Bay VTN		NEV3	1.0039	1.0044
St Peters	11	NSPT	1.0054	1.0056
Strathfield South	11	NSFS	1.0042	1.0034
Stroud	132	NSRD	1.0094	1.0084
Sydney East	132	NSE2	1.0056	1.0063
Sydney North (Ausgrid)	132	NSN1	1.0025	1.0028
Sydney North (Endeavour Energy)	132	NSN2	1.0025	1.0028
Sydney South	132	NSYS	0.9984	0.9988
Sydney West (Ausgrid)	132	NSW1	1.0010	1.0010
Sydney West (Endeavour Energy)	132	NSW2	1.0010	1.0010
Tamworth	66	NTA2	0.9531	0.9516
Taree (Essential Energy)	132	NTR2	1.0322	1.0305
Tenterfield	132	NTTF	0.9439	0.9341
Terranora	110	NTNR	0.9510	0.9623
Tomago	330	NTMG	0.9939	0.9932
Tomago (Ausgrid)	132	NTME	0.9985	0.9965
Tomago (Essential Energy)	132	NTMC	0.9985	0.9965
Top Ryde	11	NTPR	1.0136	1.0142
Tuggerah	132	NTG3	0.9964	0.9956
Tumut	66	NTU2	0.9519	0.9559
Tumut 66 (AusNet DNSP)	66	NTUX	0.9519	0.9559
Upper Tumut 11kV (Essential Energy)	11	NUT4	0.9325	0.9480
Vales Pt.	132	NVP1	0.9877	0.9871
Vineyard	132	NVYD	0.9998	0.9998
Wagga	66	NWG2	0.9297	0.9459
Wagga North	132	NWGN	0.9259	0.9446

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Wagga North	66	NWG6	0.9270	0.9453
Wallerawang (Endeavour Energy)	132	NWW6	0.9753	0.9754
Wallerawang (Essential Energy)	132	NWW5	0.9753	0.9754
Wallerawang 330 PS Load	330	NWWP	0.9740	0.9748
Wallerawang 66	66	NWW7	0.9756	0.9759
Wallerawang 66 (Essential Energy)	66	NWW4	0.9756	0.9759
Waverley	11	NWAV	1.0049	1.0050
Wellington	132	NWL8	0.9835	0.9897
West Gosford	11	NGWF	1.0041	1.0039
Williamsdale (Essential Energy) (Bogong)	132	NWD1	0.9545	0.9407
Wyong	11	NWYG	0.9976	0.9972
Yanco	33	NYA3	0.9322	0.9504
Yass	66	NYS6	0.9505	0.9568
Yass	132	NYS1	0.9317	0.9437

Table 4 New South Wales generation

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Appin Power Station	66	APPIN	NAPP1A	NAPP	0.9929	0.9950
Avonlie Solar Farm	132	AVLSF1	NNRN1A	NNRN	0.8446	0.8881
Bango 973 Wind Farm	132	BANGOWF1	NBA21B	NBA2	0.9047	0.9159
Bango 999 Wind Farm	132	BANGOWF2	NBB21B	NBB2	0.9182	0.9288
Bayswater PS Unit 1	330	BW01	NBAY1	NBAY	0.9664	0.9646
Bayswater PS Unit 2	330	BW02	NBAY2	NBAY	0.9664	0.9646
Bayswater PS Unit 3	500	BW03	NBAY3	NBYW	0.9663	0.9651
Bayswater PS Unit 4	500	BW04	NBAY4	NBYW	0.9663	0.9651
Beryl Solar Farm	66	BERYLSF1	NBES1B	NBES	0.9182	0.9339
Blowering	132	BLOWERNG	NBLW8	NBLW	0.9141	0.9241
Boco Rock Wind Farm	132	BOCORWF1	NCMA3B	NBCO	0.9344	0.9444
Bodangora Wind Farm	132	BODWF1	NBOD1B	NBOD	0.9518	0.9622
Bomen Solar Farm	132	BOMENSF1	NWGS1B	NWGS	0.8719	0.9110
Broadwater PS	132	BWTR1	NLS21B	NLS2	0.9742	0.9814
Broken Hill BESS (Generation)	22	BHBG1	NBKB1B	NBKB	0.8423	0.8671
Broken Hill BESS (Load)	22	BHBL1	NBKB2B	NBKB	0.8284	0.8919
Broken Hill GT 1	22	GB01	NBKG1	NBKG	0.8518	0.8844
Broken Hill Solar Farm	22	BROKENH1	NBK11B	NBK1	0.7784	0.8324
Brown Mountain	66	BROWNMT	NCMA1	NCMA	0.9614	0.9679
Burrendong Hydro PS	132	BDONGHYD	NWL81B	NWL8	0.9835	0.9897
Burrinjuck PS	132	BURRIN	NBUK	NBUK	0.9371	0.9454

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Campbelltown WSLC	66	WESTCBT1	NING1C	NING	0.9954	0.9958
Capital Battery (Generation)	132	CAPBES1G	NQBC1C	NQBC	0.9337	0.9704
Capital Battery (Load)	132	CAPBES1L	NQBC2C	NQBC	1.0084	1.0260
Capital Wind Farm	330	CAPTL_WF	NCWF1R	NCWF	0.9467	0.9575
Coleambally Solar Farm	132	COLEASF1	NCLS1C	NCLS	0.8367	0.8894
Collector Wind Farm	330	COLWF01	NCLW1C	NCLW	0.9495	0.9576
Colongra PS Unit 1	330	CG1	NCLG1D	NCLG	0.9828	0.9831
Colongra PS Unit 2	330	CG2	NCLG2D	NCLG	0.9828	0.9831
Colongra PS Unit 3	330	CG3	NCLG3D	NCLG	0.9828	0.9831
Colongra PS Unit 4	330	CG4	NCLG4D	NCLG	0.9828	0.9831
Condong PS	110	CONDONG1	NTNR1C	NTNR	0.9510	0.9623
Copeton Hydro PS	66	COPTNHYD	NNVL1C	NNVL	0.9465	0.9157
Corowa Solar Farm	132	CRWASF1	NAL11C	NAL1	0.8979	0.9365
Crookwell 2 Wind Farm	330	CROOKWF2	NCKW1C	NCKW	0.9512	0.9608
Crudine Ridge Wind Farm	132	CRURWF1	NCDS1C	NCDS	0.9280	0.9260
Cullerin Range Wind Farm	132	CULLRGWF	NYS11C	NYS1	0.9317	0.9437
Darlington Point ESS (Generation)	33	DPNTBG1	NRDP1D	NRDP	0.9048	0.9089
Darlington Point ESS (Load)	33	DPNTBL1	NRDP2D	NRDP	0.8774	0.9024
Darlington Point Solar Farm	132	DARLSF1	NDNS1D	NDNS	0.8439	0.8958
Eastern Creek	132	EASTCRK	NSW21	NSW2	1.0010	1.0010
Eastern Creek 2	132	EASTCRK2	NSW23L	NSW2	1.0010	1.0010
Eraring 330 BS UN (GT)	330	ERGT01	NEP35B	NEP3	0.9855	0.9848
Eraring 330 PS Unit 1	330	ER01	NEPS1	NEP3	0.9855	0.9848
Eraring 330 PS Unit 2	330	ER02	NEPS2	NEP3	0.9855	0.9848
Eraring 500 PS Unit 3	500	ER03	NEPS3	NEPS	0.9855	0.9856
Eraring 500 PS Unit 4	500	ER04	NEPS4	NEPS	0.9855	0.9856
Eraring PS Load	132	ERNL1	NEPSL	NNEW	0.9920	0.9926
Finley Solar Farm	132	FINLYSF1	NFNS1F	NFNS	0.8651	0.9255
Flyers Creek Wind Farm	132	FLYCRKWF	NONF1F	NONF	1.0205	1.0266
Glenbawn Hydro PS	132	GLBWNHYD	NMRK2G	NMRK	0.9797	0.9774
Glenn Innes (Pindari PS)	66	PINDARI	NGLN1	NGLN	0.9295	0.9061
Glennies Creek PS	132	GLENNCRK	NMRK3T	NMRK	0.9797	0.9774
Goonumbla Solar Farm	66	GOONSF1	NPG12G	NPG1	0.8969	0.9000
Grange Avenue	132	GRANGEAV	NVYD1	NVYD	0.9998	0.9998
Griffith Solar Farm	33	GRIFSF1	NGG11G	NGG1	0.8424	0.8894
Gullen Range 1 Wind Farm	330	GULLRWF1	NGUR1G	NGUR	0.9498	0.9580
Gullen Range 2 Wind Farm	330	GULLRWF2	NGUR3G	NGUR	0.9498	0.9580
Gullen Range Solar Farm	330	GULLRSF1	NGUR2G	NGUR	0.9498	0.9580

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Gunnedah Solar Farm	132	GNNDHSF1	NGNE1G	NGNE	0.8394	0.8273
Gunning Wind Farm	132	GUNNING1	NYS12A	NYS1	0.9317	0.9437
Guthega	132	GUTHEGA	NGUT8	NGUT	0.8920	0.8930
Guthega Auxiliary Supply	11	GUTHNL1	NMY11	NMY1	0.9795	0.9838
Hillston Solar Farm	132	HILLSTN1	NDNH1H	NDNH	0.8482	0.8979
Hume (New South Wales Share)	132	HUMENSW	NHUM	NHUM	0.8975	0.9205
Hunter Economic Zone	132	HEZ1	NNEE1H	NNEE	0.9896	0.9899
Jemalong Solar Farm	66	JEMALNG1	NFBS1J	NFBS	0.8943	0.8964
Jindabyne Generator	66	JNDABNE1	NCMA2	NCMA	0.9614	0.9679
Jounama PS	66	JOUNAMA1	NTU21J	NTU2	0.9519	0.9559
Junee Solar Farm	132	JUNEESF1	NWGJ1J	NWGJ	0.8752	0.9108
Kangaroo Valley (Shoalhaven) Pumps – Dual MLF (Load)	330	SHPUMP	NSHP1	NSHN	0.9866	0.9905
Kangaroo Valley – Bendeela (Shoalhaven) – Dual MLF (Generation)	330	SHGEN	NSHL	NSHN	0.9679	0.9732
Keepit	66	KEEPIT	NKPT	NKPT	0.9687	0.9572
Liddell 330 PS Load	330	LIDDNL1	NLDPL	NLDP	0.9680	0.9660
Limondale Solar Farm 1	220	LIMOSF11	NBSF1L	NBSF	0.7774	0.8255
Limondale Solar Farm 2	22	LIMOSF21	NBL21L	NBL2	0.7793	0.8310
Liverpool 132 (Jacks Gully)	132	JACKSGUL	NLP11	NMC1	0.9924	0.9929
Lower Tumut Pipeline Auxiliary	66	TUMT3NL3	NTU2L3	NTU2	0.9519	0.9559
Lower Tumut Pumps – Dual MLF (Load)	330	SNOWYP	NLTS3	NLTS	0.9498	0.9696
Lower Tumut T2 Auxiliary	66	TUMT3NL1	NTU2L1	NTU2	0.9519	0.9559
Lower Tumut T4 Auxiliary	66	TUMT3NL2	NTU2L2	NTU2	0.9519	0.9559
Lower Tumut – Dual MLF (Generation)	330	TUMUT3	NLTS8	NLTS	0.8988	0.9080
Lucas Heights II Power Plant	132	LUCASHGT	NSYS2G	NSYS	0.9984	0.9988
Lucas Heights Stage 2 Power Station	132	LUCAS2S2	NSYS1	NSYS	0.9984	0.9988
Manildra Solar Farm	132	MANSLR1	NMLS1M	NMLS	0.9541	0.9557
Metz Solar Farm	132	METZSF1	NMTZ1M	NMTZ	0.8668	0.8486
Molong Solar Farm	66	MOLNGSF1	NMOS1M	NMOS	0.9616	0.9733
Moree Solar Farm	66	MOREESF1	NMR41M	NMR4	0.8086	0.7977
Mt Piper PS Load	330	MPNL1	NMPPL	NMTP	0.9706	0.9717
Mt Piper PS Unit 1	330	MP1	NMTP1	NMTP	0.9706	0.9717
Mt Piper PS Unit 2	330	MP2	NMTP2	NMTP	0.9706	0.9717
Narromine Solar Farm	132	NASF1	NWLS1N	NWLS	0.9284	0.9439
Nevertire Solar Farm	132	NEVERSF1	NWLS3N	NWLS	0.9284	0.9439
New England Solar Farm 1	330	NEWENSF1	NURR1N	NURR	0.8901	0.8718
New England Solar Farm 2	330	NEWENSF2	NURR2N	NURR	0.8901	0.8718
Nyngan Solar Farm	132	NYNGAN1	NWL82N	NWL8	0.9835	0.9897

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Parkes Solar Farm	66	PARSF1	NPG11P	NPG1	0.8969	0.9000
Queanbeyan BESS (Generation)	66	QBYNBG1	NQBB1Q	NQBB	0.9571	0.9790
Queanbeyan BESS (Load)	66	QBYNBL1	NQBB2Q	NQBB	0.9795	0.9910
Riverina ESS 1 (Generation)	33	RESS1G	NRBB1R	NRBB	0.8702	0.9089
Riverina ESS 1 (Load)	33	RESS1L	NRBB2R	NRBB	0.8657	0.9024
Riverina ESS 2 (Generation)	33	RIVNBG2	NRB21R	NRB2	0.9048	0.9106
Riverina ESS 2 (Load)	33	RIVNBL2	NRB22R	NRB2	0.8774	0.9073
Rye Park Wind Farm	330	RYEPARK1	NRPK1R	NRPK	0.9427	0.9544
Sapphire Wind Farm	330	SAPHWF1	NSAP1S	NSAP	0.9012	0.9086
Sebastopol Solar Farm	132	SEBSF1	NWGJ2S	NWGJ	0.8752	0.9108
Silverton Wind Farm	220	STWF1	NBKW1S	NBKW	0.8050	0.8101
Sithe (Holroyd Generation)	132	SITHE01	NSYW1	NHD2	1.0015	1.0015
South Keswick Solar Farm	132	SKSF1	NWLS2S	NWLS	0.9284	0.9439
St George Leagues Club	33	STGEORG1	NPHT1E	NPHT	1.0009	1.0013
Sunraysia Solar farm	220	SUNRSF1	NBSF2S	NBSF	0.7774	0.8255
Suntop Solar Farm	132	SUNTPSF1	NWLW1S	NWLW	0.9096	0.9224
Tahmoor PS	132	TAHMOOR1	NLP12T	NLP1	0.9998	0.9999
Tallawarra B PS	132	TALWB1	NDTB1T	NDTB	0.9843	0.9845
Tallawarra PS	132	TALWA1	NDT13T	NTWA	0.9861	0.9856
Taralga Wind Farm	132	TARALGA1	NMR22T	NMR2	1.0088	1.0095
The Drop Power Station	66	THEDROP1	NFNY1D	NFNY	0.9563	0.9687
Tower Power Plant	132	TOWER	NLP11T	NLP1	0.9998	0.9999
Upper Tumut	330	UPPTUMUT	NUTS8	NUTS	0.9236	0.9318
Uranquinty PS Unit 11	132	URANQ11	NURQ1U	NURQ	0.8398	0.8383
Uranquinty PS Unit 12	132	URANQ12	NURQ2U	NURQ	0.8398	0.8383
Uranquinty PS Unit 13	132	URANQ13	NURQ3U	NURQ	0.8398	0.8383
Uranquinty PS Unit 14	132	URANQ14	NURQ4U	NURQ	0.8398	0.8383
Vales Point 330 PS Load	330	VPNL1	NVPPL	NVPP	0.9874	0.9869
Vales Point 330 PS Unit 5	330	VP5	NVPP5	NVPP	0.9874	0.9869
Vales Point 330 PS Unit 6	330	VP6	NVPP6	NVPP	0.9874	0.9869
Wagga North Solar Farm	66	WAGGNSF1	NWGG1W	NWGG	0.8720	0.9070
Wallgrove BESS (Generation)	132	WALGRVG1	NSWB1W	NSWG	1.0010	1.0010
Wallgrove BESS (Load)	132	WALGRVL1	NSWB2W	NSWB	1.0009	1.0009
Wellington Solar Farm	132	WELLSF1	NWLS4W	NWLS	0.9284	0.9439
West Wyalong Solar Farm	132	WSTWYSF1	NWGJ3W	NWGJ	0.8752	0.9108
Wests Illawarra Leagues Club	132	WESTILL1	NDT14E	NDT1	0.9893	0.9888
White Rock Solar Farm	132	WRSF1	NWRK2W	NWRK	0.8453	0.8289
White Rock Wind Farm	132	WRWF1	NWRK1W	NWRK	0.8453	0.8289

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Wilga Park A	66	WILGAPK	NNB21W	NNB2	0.9911	0.9799
Wilga Park B	66	WILGB01	NNB22W	NNB2	0.9911	0.9799
Woodlawn Bioreactor	132	WDLNGN01	NMR21W	NMR2	1.0088	1.0095
Woodlawn Wind Farm	330	WOODLWN1	NCWF2W	NCWF	0.9467	0.9575
Wyalong Solar Farm	132	WYASF1	NWGJ4W	NWGJ	0.8752	0.9108
Wyangala A PS - Dual MLF (Generation)	66	WYANGALA	NCW81A	NCW8	0.9971	0.9378
Wyangala A PS - Dual MLF (Load)	66	WYANGALA	NCW81A	NCW8	0.9971	0.9713
Wyangala B PS - Dual MLF (Generation)	66	WYANGALB	NCW82B	NCW8	0.9971	0.9378
Wyangala B PS - Dual MLF (Load)	66	WYANGALB	NCW82B	NCW8	0.9971	0.9713

Table 5 ACT loads

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
ACT VTN	132	AAVT	0.9567	0.9663
Angle Crossing	132	AAXG	0.9485	0.9645
Belconnen	132	ABCN	0.9554	0.9655
City East	132	ACTE	0.9580	0.9684
Civic	132	ACVC	0.9561	0.9667
East lake	132	AELK	0.9585	0.9687
Gilmore	132	AGLM	0.9569	0.9665
Gold Creek	132	AGCK	0.9557	0.9643
Latham	132	ALTM	0.9551	0.9640
Queanbeyan (ACTEW)	66	AQB1	0.9751	0.9867
Queanbeyan (Essential Energy)	66	AQB2	0.9751	0.9867
Telopea Park	132	ATLP	0.9576	0.9683
Theodore	132	ATDR	0.9574	0.9639
Wanniassa	132	AWSA	0.9567	0.9660
Woden	132	AWDN	0.9562	0.9658

The Regional Reference Node (RRN) for ACT load and generation is the Sydney West 330 kV node.

Table 6 ACT generation

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Capital East Solar Farm	66	CESF1	AQB21C	AQB2	0.9751	0.9867
Mugga Lane Landfill	132	MLLFGEF1	AGLM1M	AAVT	0.9567	0.9663
Mugga Lane Solar Farm	132	MLSP1	ACA12M	AMS1	0.9523	0.9674
Royalla Solar Farm	132	ROYALLA1	ACA11R	ARS1	0.9515	0.9668

The RRN for ACT load and generation is the Sydney West 330 kV node.

1.3 Victoria marginal loss factors

Table 7 Victoria loads

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Altona	220	VAT2	0.9975	0.9979
Altona	66	VATS	1.0041	1.0046
BHP Western Port	220	VJLA	0.9947	0.9945
Ballarat	66	VBAT	0.9718	0.9759
Bendigo	22	VBE2	1.0091	1.0169
Bendigo	66	VBE6	1.0072	1.0165
Brooklyn (Jemena)	22	VBL2	1.0023	1.0020
Brooklyn (Jemena)	66	VBL6	1.0053	1.0032
Brooklyn (Powercor)	22	VBL3	1.0023	1.0020
Brooklyn (Powercor)	66	VBL7	1.0053	1.0032
Brunswick (CitiPower)	22	VBT2	1.0006	1.0007
Brunswick (Jemena)	22	VBTS	1.0006	1.0007
Brunswick 66 (CitiPower)	66	VBT6	1.0000	0.9997
Cranbourne	220	VCB2	0.9937	0.9931
Cranbourne (AusNet Services)	66	VCBT	0.9955	0.9956
Cranbourne (United Energy)	66	VCB5	0.9955	0.9956
Deer Park	66	VDPT	1.0023	1.0024
East Rowville (AusNet Services)	66	VER2	0.9954	0.9957
East Rowville (United Energy)	66	VERT	0.9954	0.9957
Fishermens Bend (CitiPower)	66	VFBT	1.0022	1.0016
Fishermens Bend (Powercor)	66	VFB2	1.0022	1.0016
Fosterville	220	VFVT	0.9963	1.0108
Geelong	66	VGT6	0.9927	0.9939
Glenrowan	66	VGNT	1.0160	1.0233
Heatherton	66	VHTS	1.0006	1.0010
Heywood	22	VHY2	0.9898	0.9947
Horsham	66	VHOT	0.9036	0.9139
Keilor (Jemena)	66	VKT2	1.0006	1.0005
Keilor (Powercor)	66	VKTS	1.0006	1.0005
Kerang	22	VKG2	1.0071	1.0203
Kerang	66	VKG6	1.0170	1.0282
Khancoban	330	NKHN	1.0379	1.0386
Loy Yang Substation	66	VLY6	0.9856	0.9828
Malvern	22	VMT2	0.9984	0.9986
Malvern	66	VMT6	0.9974	0.9975

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Malvern (CitiPower)	66	VMT7	0.9974	0.9975
Morwell PS (G4&5)	11	VMWP	0.9836	0.9805
Morwell Power Station Units 1 to 3	66	VMWG	0.9855	0.9829
Morwell TS	66	VMWT	0.9848	0.9825
Mt Beauty	66	VMBT	1.0284	1.0335
Portland	500	VAPD	0.9936	0.9983
Red Cliffs	22	VRC2	0.9566	0.9845
Red Cliffs	66	VRC6	0.9662	0.9907
Red Cliffs (Essential Energy)	66	VRCA	0.9662	0.9907
Richmond	22	VRT2	0.9994	0.9992
Richmond (CitiPower)	66	VRT7	1.0001	1.0000
Richmond (United Energy)	66	VRT6	1.0001	1.0000
Ringwood (AusNet Services)	22	VRW3	1.0003	1.0005
Ringwood (AusNet Services)	66	VRW7	0.9996	1.0001
Ringwood (United Energy)	22	VRW2	1.0003	1.0005
Ringwood (United Energy)	66	VRW6	0.9996	1.0001
Shepparton	66	VSHT	1.0372	1.0410
South Morang (AusNet Services)	66	VSMT	0.9977	0.9975
South Morang (Jemena)	66	VSM6	0.9977	0.9975
Springvale (CitiPower)	66	VSVT	0.9978	1.0001
Springvale (United Energy)	66	VSV2	0.9978	1.0001
Templestowe (AusNet Services)	66	VTS3	0.9999	1.0007
Templestowe (CitiPower)	66	VTS2	0.9999	1.0007
Templestowe (Jemena)	66	VTST	0.9999	1.0007
Templestowe (United Energy)	66	VTS4	0.9999	1.0007
Terang	66	VTGT	0.9993	0.9933
Thomastown (AusNet Services)	66	VTT2	1.0000	1.0000
Thomastown (Jemena)	66	VTTS	1.0000	1.0000
Tyabb	66	VTBT	0.9959	0.9960
Wemen 66 (Essential Energy)	66	VWEA	0.9367	0.9782
Wemen TS	66	VWET	0.9367	0.9782
West Melbourne	22	VWM2	0.9997	1.0000
West Melbourne (CitiPower)	66	VWM7	1.0012	1.0004
West Melbourne (Jemena)	66	VWM6	1.0012	1.0004
Wodonga	22	VWO2	1.0305	1.0333
Wodonga	66	VWO6	1.0200	1.0246
Yallourn	11	VYP1	0.9640	0.9660

Table 8 Victoria generation

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Ararat Wind Farm	220	ARWF1	VART1A	VART	0.8856	0.8899
Bairnsdale Power Station	66	BDL01	VMWT2	VBDL	0.9816	0.9804
Bairnsdale Power Station Generator Unit 2	66	BDL02	VMWT3	VBDL	0.9816	0.9804
Bald Hills Wind Farm	66	BALDHWF1	VMWT9B	VMWT	0.9848	0.9825
Ballarat BESS (Generation)	22	BALBG1	VBA21B	VBA2	0.9713	0.9756
Ballarat BESS (Load)	22	BALBL1	VBA22B	VBA2	0.9605	0.9691
Ballarat Health Services	66	BBASEHOS	VBAT1H	VBAT	0.9718	0.9759
Banimboola	220	BAPS	VDPS2	VDPS	0.9814	0.9622
Bannerton Solar Farm	66	BANN1	VWES1B	VWES	0.8584	0.8947
Basslink (Loy Yang Power Station Switchyard) Tasmania to Victoria	500	BLNKVIC	VLYP13	VTBL	0.9777	0.9755
Basslink (Loy Yang Power Station Switchyard) Victoria to Tasmania	500	BLNKVIC	VLYP13	VTBL	0.9852	0.9826
Berrybank Wind Farm	220	BRYB1WF1	VBBT1B	VBBT	0.9315	0.9397
Berrybank Wind Farm 2	220	BRYB2WF2	VBBT2B	VBBT	0.9315	0.9397
Broadmeadows Power Plant	66	BROADMDW	VTTS2B	VTTS	1.0000	1.0000
Brooklyn Landfill & Recycling Facility	66	BROOKLYN	VBL61	VBL6	1.0053	1.0032
Bulgana BESS (Generation)	220	BULBESG1	VBGT2B	VBGT	0.8733	0.8821
Bulgana BESS (Load)	220	BULBESL1	VBGT3B	VBGT	0.8733	0.8821
Bulgana Green Power Hub	220	BULGANA1	VBGT1B	VBGT	0.8733	0.8821
Challicum Hills Wind Farm	66	CHALLHWF	VHOT1	VBAT	0.9718	0.9759
Chepstowe Wind Farm	66	CHPSTWF1	VBAT3C	VBAT	0.9718	0.9759
Cherry Tree Wind Farm	66	CHYTWF1	VSM71C	VSM7	0.9976	0.9974
Clayton Landfill Gas Power Station	66	CLAYTON	VSV21B	VSV2	0.9978	1.0001
Clover PS	66	CLOVER	VMBT1	VMBT	1.0284	1.0335
Codrington Wind Farm	66	CODRNGTON	VTGT2C	VTGT	0.9993	0.9933
Cohuna Solar Farm	66	COHUNSF1	VKGS2C	VKGS	0.8962	0.9413
Coonooer Bridge Wind Farm	66	CBWF1	VBE61C	VBE6	1.0072	1.0165
Corio LFG PS	66	CORIO1	VGT61C	VGT6	0.9927	0.9939
Crowlands Wind Farm	220	CROWLWF1	VCWL1C	VCWL	0.8833	0.8904
Dartmouth PS	220	DARTM1	VDPS	VDPS	0.9814	0.9622
Diapur Wind Farm	66	DIAPURWF1	VHOG2D	VHOG	0.8733	0.8827
Dundonnell Wind Farm 1	500	DUNDWF1	VM051D	VM05	0.9810	0.9870
Dundonnell Wind Farm 2	500	DUNDWF2	VM052D	VM05	0.9810	0.9870
Dundonnell Wind Farm 3	500	DUNDWF3	VM053D	VM05	0.9810	0.9870
Eildon Hydro PS	66	EILDON3	VTT22E	VSMT	0.9977	0.9975
Eildon PS Unit 1	220	EILDON1	VEPS1	VEPS	0.9912	0.9920
Eildon PS Unit 2	220	EILDON2	VEPS2	VEPS	0.9912	0.9920
Elaine Wind Farm	220	ELAINWF1	VELT3E	VELT	0.9475	0.9576

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Ferguson North Wind Farm	66	FNWF1	VTGT6F	VTGT	0.9993	0.9933
Ferguson South Wind Farm	66	FSWF1	VTGT7F	VTGT	0.9993	0.9933
Gannawarra BESS (Generation)	66	GANNBG1	VKGB1G	VKGB	1.0155	1.0290
Gannawarra BESS (Load)	66	GANNBL1	VKGB2G	VKGL	0.9597	0.9849
Gannawarra Solar Farm	66	GANNSF1	VKGS1G	VKGS	0.8962	0.9413
Glenmaggie Hydro PS	66	GLENMAG1	VMWT8G	VMWT	0.9848	0.9825
Glenrowan Solar Farm	220	GLENSF1	VGN21G	VGN2	0.9626	0.9627
Glenrowan West Sun Farm	66	GLRWNSF1	VGNS1G	VGNS	0.9455	0.9675
Hallam Mini Hydro	66	HLMSEW01	VER21H	VCBT	0.9955	0.9956
Hallam Road Renewable Energy Facility	66	HALAMRD1	VER22L	VER2	0.9954	0.9957
Hazelwood BESS (Generation)	220	HBESSG1	VHW21H	VHW2	0.9804	0.9789
Hazelwood BESS (Load)	220	HBESSL1	VHW22H	VHW2	0.9864	0.9828
Hepburn Community Wind Farm	66	HEPWIND1	VBAT2L	VBAT	0.9718	0.9759
Hume (Victorian Share)	66	HUMEV	VHUM	VHUM	0.9539	0.9389
Jeeralang A PS Unit 1	220	JLA01	VJLGA1	VJLG	0.9789	0.9764
Jeeralang A PS Unit 2	220	JLA02	VJLGA2	VJLG	0.9789	0.9764
Jeeralang A PS Unit 3	220	JLA03	VJLGA3	VJLG	0.9789	0.9764
Jeeralang A PS Unit 4	220	JLA04	VJLGA4	VJLG	0.9789	0.9764
Jeeralang B PS Unit 1	220	JLB01	VJLGB1	VJLG	0.9789	0.9764
Jeeralang B PS Unit 2	220	JLB02	VJLGB2	VJLG	0.9789	0.9764
Jeeralang B PS Unit 3	220	JLB03	VJLGB3	VJLG	0.9789	0.9764
Jindabyne pump at Guthega	132	SNOWYGJP	NGJP	NGJP	1.0930	1.0783
Karadoc Solar Farm	66	KARSF1	VRCS1K	VRCS	0.8506	0.8877
Kiamal Solar Farm	220	KIAMSF1	VKMT1K	VKMT	0.8363	0.8775
Kiata Wind Farm	66	KIATAWF1	VHOG1K	VHOG	0.8733	0.8827
Laverton PS (LNGS1)	220	LNGS1	VAT21L	VAT2	0.9975	0.9979
Laverton PS (LNGS2)	220	LNGS2	VAT22L	VAT2	0.9975	0.9979
Longford	66	LONGFORD	VMWT6	VMWT	0.9848	0.9825
Loy Yang A PS Load	500	LYNL1	VLYPL	VLYP	0.9809	0.9782
Loy Yang A PS Unit 1	500	LYA1	VLYP1	VLYP	0.9809	0.9782
Loy Yang A PS Unit 2	500	LYA2	VLYP2	VLYP	0.9809	0.9782
Loy Yang A PS Unit 3	500	LYA3	VLYP3	VLYP	0.9809	0.9782
Loy Yang A PS Unit 4	500	LYA4	VLYP4	VLYP	0.9809	0.9782
Loy Yang B PS Unit 1	500	LOYYB1	VLYP5	VLYP	0.9809	0.9782
Loy Yang B PS Unit 2	500	LOYYB2	VLYP6	VLYP	0.9809	0.9782
MacArthur Wind Farm	500	MACARTH1	VTRT1M	VTRT	0.9781	0.9849
Maroona Wind Farm	66	MAROOWF1	VBAT5M	VBAT	0.9718	0.9759
McKay Creek / Bogong PS	220	MCKAY1	VMKP1	VT14	0.9703	0.9819
Moorabool Wind Farm	220	MOORAWF1	VELT2M	VELT	0.9475	0.9576

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Mortlake South Wind Farm	220	MRTLSWF1	VTG21M	VTG2	0.9430	0.9528
Mortlake Unit 1	500	MORTLK11	VM0P1O	VM0P	0.9914	0.9927
Mortlake Unit 2	500	MORTLK12	VM0P2O	VM0P	0.9914	0.9927
Mortons Lane Wind Farm	66	MLWF1	VTGT4M	VTGT	0.9993	0.9933
Mt Gellibrand Wind Farm	66	MTGELWF1	VGTW1M	VGTW	0.9855	0.9896
Mt Mercer Wind Farm	220	MERCER01	VELT1M	VELT	0.9475	0.9576
Murra Warra Wind Farm	220	MUWAWF1	VMRT1M	VMRT	0.8619	0.8768
Murra Warra Wind Farm Stage 2	220	MUWAWF2	VMRT2M	VMRT	0.8619	0.8768
Murray	330	MURRAY	NMUR8	NMUR	0.9947	0.9850
Murray (Geehi Tee off Auxiliary)	330	MURAYNL3	NMURL3	NMUR	0.9947	0.9850
Murray Power Station M1 Auxiliary	330	MURAYNL1	NMURL1	NMUR	0.9947	0.9850
Murray Power Station M2 Auxiliary	330	MURAYNL2	NMURL2	NMUR	0.9947	0.9850
Newport PS	220	NPS	VNPS	VNPS	0.9941	0.9937
Numurkah Solar Farm	66	NUMURSF1	VSHS1N	VSHS	0.9477	0.9738
Oaklands Hill Wind Farm	66	OAKLAND1	VTGT3A	VTGT	0.9993	0.9933
Phillip Island BESS (Generation)	66	PIBESSG1	VMWT10	VMWT	0.9848	0.9825
Phillip Island BESS (Load)	66	PIBESSL1	VMWT11	VMWT	0.9848	0.9825
Rubicon Mountain Streams Station	66	RUBICON	VTT21R	VSMT	0.9977	0.9975
Salt Creek Wind Farm	66	SALTCRK1	VTG61S	VTG6	0.9388	0.9476
Shepparton Waste Gas	66	SHEP1	VSHT2S	VSHT	1.0372	1.0410
Somerton Power Station	66	AGLSOM	VTTS1	VSOM	0.9962	0.9960
Stockyard Hill Wind Farm	500	STOCKYD1	VHGT1S	VHGT	0.9812	0.9869
Tatura	66	TATURA01	VSHT1	VSHT	1.0372	1.0410
Timboon West Wind Farm	66	TIMWEST	VTGT5T	VTGT	0.9993	0.9933
Toora Wind Farm	66	TOORAWF	VMWT5	VMWT	0.9848	0.9825
Traralgon NSS	66	TGNSS1	VMWT1T	VMWT	0.9848	0.9825
Valley Power Unit 1	500	VPGS1	VLYP07	VLYP	0.9809	0.9782
Valley Power Unit 2	500	VPGS2	VLYP08	VLYP	0.9809	0.9782
Valley Power Unit 3	500	VPGS3	VLYP09	VLYP	0.9809	0.9782
Valley Power Unit 4	500	VPGS4	VLYP010	VLYP	0.9809	0.9782
Valley Power Unit 5	500	VPGS5	VLYP011	VLYP	0.9809	0.9782
Valley Power Unit 6	500	VPGS6	VLYP012	VLYP	0.9809	0.9782
Victorian Big Battery (Generation)	220	VBBG1	VMLB1V	VMLB	0.9879	0.9885
Victorian Big Battery (Load)	220	VBBL1	VMLB2V	VMLB	0.9858	0.9895
Waubra Wind Farm	220	WAUBRAWF	VWBT1A	VWBT	0.9149	0.9240
Wemen Solar Farm	66	WEMENSF1	VWES2W	VWES	0.8584	0.8947
West Kiewa PS Unit 1	220	WKIEWA1	VWKP1	VWKP	1.0026	1.0110
West Kiewa PS Unit 2	220	WKIEWA2	VWKP2	VWKP	1.0026	1.0110
William Hovell Hydro PS	66	WILLHOV1	VW061W	VGNT	1.0160	1.0233

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Winton Solar Farm	66	WINTSF1	VGNS2W	VGNS	0.9455	0.9675
Wollert Renewable Energy Facility	66	WOLLERT1	VSMT1W	VSMT	0.9977	0.9975
Wonthaggi Wind Farm	66	WONWP	VMWT7	VMWT	0.9848	0.9825
Yallourn W PS 220 Load	220	YWNL1	VYP2L	VYP2	0.9604	0.9624
Yallourn W PS 220 Unit 1	220	YWPS1	VYP21	VYP3	0.9621	0.9696
Yallourn W PS 220 Unit 2	220	YWPS2	VYP22	VYP2	0.9604	0.9624
Yallourn W PS 220 Unit 3	220	YWPS3	VYP23	VYP2	0.9604	0.9624
Yallourn W PS 220 Unit 4	220	YWPS4	VYP24	VYP2	0.9604	0.9624
Yaloak South Wind Farm	66	YSWF1	VBAT4Y	VBAT	0.9718	0.9759
Yambuk Wind Farm	66	YAMBUKWF	VTGT1	VTGT	0.9993	0.9933
Yarrawonga Hydro PS	66	YWNGAHYD	VSHT3Y	VSHT	1.0372	1.0410
Yatpool Solar Farm	66	YATSF1	VRCS2Y	VRCS	0.8506	0.8877
Yawong Wind Farm	66	YAWWF1	VBE62Y	VBE6	1.0072	1.0165
Yendon Wind Farm	66	YENDWF1	VBAW1Y	VBAW	0.9425	0.9522

1.4 South Australia marginal loss factors

Table 9 South Australia loads

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Angas Creek	33	SANC	1.0082	1.0095
Ardrossan West	33	SARW	0.9355	0.9332
Back Callington	11	SBAC	1.0063	1.0069
Baroota - Dual MLF (Generation)	33	SBAR	0.9739	0.9733
Baroota - Dual MLF (Load)	33	SBAR	0.9884	0.9868
Berri	66	SBER	0.9619	0.9709
Berri (POWERCOR)	66	SBE1	0.9619	0.9709
Blanche	33	SBLA	1.0236	1.0201
Blanche (POWERCOR)	33	SBL1	1.0236	1.0201
Brinkworth	33	SBRK	0.9862	0.9868
Bungama Industrial	33	SBUN	0.9772	0.9797
Bungama Rural	33	SBUR	0.9866	0.9888
City West	66	SACR	1.0064	1.0069
Clare North	33	SCLN	0.9794	0.9813
Dalrymple	33	SDAL	0.9047	0.9012
Davenport	275	SDAV	0.9764	0.9779
Davenport	33	SDAW	0.9795	0.9799
Dorrien	33	SDRN	1.0036	1.0049
East Terrace	66	SETC	1.0009	1.0013
Happy Valley	66	SHVA	1.0043	1.0041
Hummocks	33	SHUM	0.9558	0.9537

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Kadina East	33	SKAD	0.9606	0.9672
Kanmantoo	11	SKAN	1.0109	1.0113
Keith	33	SKET	1.0151	1.0175
Kilburn	66	SKLB	1.0023	1.0022
Kincraig	33	SKNC	1.0179	1.0180
Lefevre	66	SLFE	1.0002	1.0002
Leigh Creek South	11	SLCS	1.0036	1.0026
Magill	66	SMAG	1.0021	1.0023
Mannum	33	SMAN	1.0170	1.0169
Mannum – Adelaide Pipeline 1	3.3	SMA1	1.0100	1.0153
Mannum – Adelaide Pipeline 2 - Dual MLF (Generation)	3.3	SMA2	0.9926	0.9943
Mannum – Adelaide Pipeline 2 - Dual MLF (Load)	3.3	SMA2	1.0114	1.0151
Mannum – Adelaide Pipeline 3 - Dual MLF (Generation)	3.3	SMA3	0.9802	0.9946
Mannum – Adelaide Pipeline 3 - Dual MLF (Load)	3.3	SMA3	0.9802	1.0149
Middleback	132	SMBK	0.9917	0.9924
Middleback	33	SMDL	0.9894	0.9893
Millbrook	132	SMLB	1.0008	1.0017
Mobilong	33	SMBL	1.0098	1.0108
Morgan - Whyalla Pipeline 1	3.3	SMW1	0.9759	0.9847
Morgan - Whyalla Pipeline 2	3.3	SMW2	0.9766	0.9880
Morgan - Whyalla Pipeline 3	3.3	SMW3	0.9787	0.9847
Morgan - Whyalla Pipeline 4	3.3	SMW4	0.9751	0.9796
Morphett Vale East	66	SMVE	1.0025	1.0039
Mount Barker South	66	SMBS	1.0046	1.0052
Mt Barker	66	SMBA	1.0038	1.0039
Mt Gambier	33	SMGA	1.0235	1.0240
Mt Gunson	33	SMGU	0.9913	0.9882
Mt Gunson South	132	SMGS	0.9769	0.9781
Munno Para	66	SMUP	0.9996	0.9991
Murray Bridge – Hahndorf Pipeline 1	11	SMH1	1.0104	1.0132
Murray Bridge – Hahndorf Pipeline 2 - Dual MLF (Generation)	11	SMH2	0.9993	1.0006
Murray Bridge – Hahndorf Pipeline 2 - Dual MLF (Load)	11	SMH2	1.0133	1.0151
Murray Bridge – Hahndorf Pipeline 3	11	SMH3	1.0105	1.0116
Neuroodla	33	SNEU	0.9922	0.9939
New Osborne	66	SNBN	1.0003	0.9999
North West Bend	66	SNWB	0.9721	0.9805
Northfield	66	SNFD	1.0023	1.0024

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Para	66	SPAR	0.9985	0.9998
Parafield Gardens West	66	SPGW	1.0004	0.9995
Penola West 33	33	SPEN	1.0201	1.0162
Pimba	132	SPMB	1.0058	1.0700
Playford	132	SPAA	0.9754	0.9766
Port Lincoln	33	SPLN	0.9798	0.9779
Port Pirie	33	SPPR	0.9851	0.9835
Roseworthy	11	SRSW	1.0058	1.0062
Snuggery Industrial	33	SSNN	1.0664	1.0526
Snuggery Rural	33	SSNR	0.9946	0.9901
South Australian VTN		SJP1	0.9950	0.9964
Stony Point	11	SSPN	0.9830	0.9823
Tailem Bend	33	STAL	1.0093	1.0087
Templers	33	STEM	1.0117	1.0164
Torrens Island	66	STSY	1.0000	1.0000
Waterloo	33	SWAT	0.9751	0.9775
Whyalla Central Substation	33	SWYC	0.9826	0.9836
Whyalla Terminal BHP	33	SBHP	0.9831	0.9836
Woomera	132	SWMA	0.9947	0.9902
Wudina	66	SWUD	0.9915	0.9934
Yadnarie	66	SYAD	0.9792	0.9786

Table 10 South Australia generation

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Adelaide Desalination Plant Battery (Generation)	66	ADPBA1G	SMVE4D	SMVE	1.0025	1.0039
Adelaide Desalination Plant Battery (Load)	66	ADPBA1L	SMVE5D	SMVE	1.0025	1.0039
Adelaide Desalination Plant Hydro	66	ADPMH1	SMVE9D	SMVE	1.0025	1.0039
Adelaide Desalination Plant PV1	66	ADPPV1	SMVE6D	SMVE	1.0025	1.0039
Adelaide Desalination Plant PV2	66	ADPPV2	SMVE7D	SMVE	1.0025	1.0039
Adelaide Desalination Plant PV3	66	ADPPV3	SMVE8D	SMVE	1.0025	1.0039
Angaston Power Station	33	ANGAST1	SDRN1	SANG	1.0094	1.0048
Barker Inlet PS	275	BARKIPS1	SBPS1B	SBPS	1.0001	1.0000
Bolivar Power Station	66	BOLIVPS1	SPGG1B	SPGG	0.9996	0.9949
Bolivar WWT Plant	66	BOLIVAR1	SPGW1B	SPGW	1.0004	0.9995
Bolivar Wastewater Treatment Plant PV	66	BOWWPV1	SPGW2B	SPGW	1.0004	0.9995
Bolivar Wastewater Treatment Plant Reserve BESS (Generation)	66	BOWWBA1G	SPGW3B	SPGW	1.0004	0.9995
Bolivar Wastewater Treatment Plant Reserve BESS (Load)	66	BOWWBA1L	SPGW4B	SPGW	1.0004	0.9995

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Bolivar Wastewater Treatment Plant Reserve Diesel	66	BOWWDG1	SPGW5B	SPGW	1.0004	0.9995
Bungala One Solar Farm	132	BNGSF1	SBEM1B	SBEM	0.9565	0.9601
Bungala Two Solar Farm	132	BNGSF2	SBEM2B	SBEM	0.9565	0.9601
Canunda Wind Farm	33	CNUNDAWF	SSNN1	SCND	0.9755	0.9671
Cathedral Rocks Wind Farm	132	CATHROCK	SCRK	SCRK	0.9309	0.9319
Christies Beach BESS (Generation)	66	CBWWBA1G	SMVE7C	SMVE	1.0025	1.0039
Christies Beach BESS (Load)	66	CBWWBA1L	SMVE8C	SMVE	1.0025	1.0039
Christies Beach Biogas	66	CBWWBG1	SMVE11	SMVE	1.0025	1.0039
Christies Beach Diesel 1	66	CBWWDG1	SMVE12	SMVE	1.0025	1.0039
Christies Beach Diesel 2	66	CBWWDG2	SMVE13	SMVE	1.0025	1.0039
Christies Beach Solar Farm 1	66	CBWWPV1	SMVE9C	SMVE	1.0025	1.0039
Christies Beach Solar Farm 2	66	CBWWPV2	SMVE10	SMVE	1.0025	1.0039
Clements Gap Wind Farm	132	CLEMGPWF	SCGW1P	SCGW	0.9486	0.9522
Cummins Lonsdale PS	66	LONSDALE	SMVE1	SMVE	1.0025	1.0039
Dalrymple North BESS (Generation)	33	DALNTH01	SDAN1D	SDAM	0.9092	0.8954
Dalrymple North BESS (Load)	33	DALNTHL1	SDAN2D	SDAN	0.9005	0.8790
Dry Creek PS Unit 1	66	DRYCGT1	SDCA1	SDPS	0.9998	0.9992
Dry Creek PS Unit 2	66	DRYCGT2	SDCA2	SDPS	0.9998	0.9992
Dry Creek PS Unit 3	66	DRYCGT3	SDCA3	SDPS	0.9998	0.9992
Goyder South Wind Farm 1A	275	GSWF1A	SROB1G	SROB	0.9643	0.9702
Goyder South Wind Farm 1B	275	GSWF1B1	SRAB1G	SRAB	0.9641	0.9728
Hallett 1 Wind Farm	275	HALLWF1	SHPS2W	SHPS	0.9565	0.9599
Hallett 2 Wind Farm	275	HALLWF2	SMOK1H	SMOK	0.9526	0.9570
Hallett PS	275	AGLHAL	SHPS1	SHPS	0.9565	0.9599
Happy Valley BESS (Generation)	66	HVWWBA1G	SHVA1H	SHVA	1.0043	1.0041
Happy Valley BESS (Load)	66	HVWWBA1L	SHVA2H	SHVA	1.0043	1.0041
Happy Valley Solar Farm	66	HVWWPC1	SHVA3H	SHVA	1.0043	1.0041
Hornsdale Battery (Generation)	275	HPRG1	SMTL1H	SMTL	0.9657	0.9653
Hornsdale Battery (Load)	275	HPRL1	SMTL2H	SMTL	0.9625	0.9682
Hornsdale Wind Farm Stage 1	275	HDWF1	SHDW1H	SHDW	0.9423	0.9467
Hornsdale Wind Farm Stage 2	275	HDWF2	SHDW2H	SHDW	0.9423	0.9467
Hornsdale Wind Farm Stage 3	275	HDWF3	SHDW3H	SHDW	0.9423	0.9467
Ladbroke Grove PS Unit 1	132	LADBROK1	SPEW1	SPEW	0.9712	0.9736
Ladbroke Grove PS Unit 2	132	LADBROK2	SPEW2	SPEW	0.9712	0.9736
Lake Bonney BESS (Generation)	33	LBBG1	SLBB1L	SLBB	0.9841	0.9790
Lake Bonney BESS (Load)	33	LBBL1	SLBB2L	SLBB	1.0370	1.0290
Lake Bonney Wind Farm	33	LKBONNY1	SMAY1	SMAY	0.9709	0.9656
Lake Bonney Wind Farm Stage 2	33	LKBONNY2	SMAY2	SMAY	0.9709	0.9656
Lake Bonney Wind Farm Stage 3	33	LKBONNY3	SMAY3W	SMAY	0.9709	0.9656

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Lincoln Gap Wind Farm	275	LGAPWF1	SLGW1L	SLGW	0.9576	0.9601
Lincoln Gap Wind Farm Stage 2	275	LGAPWF2	SLGW4L	SLGW	0.9576	0.9601
Mannum Solar Farm 2	33	MANNSF2	SMAE1M	SMAE	0.9937	0.9893
Mannum-Adelaide Pipeline Pumping Station No 2 Solar Farm – Dual MLF (Generation)	3.3	MAPS2PV1	SMA21M	SMA2	0.9926	0.9943
Mannum-Adelaide Pipeline Pumping Station No 2 Solar Farm – Dual MLF (Load)	3.3	MAPS2PV1	SMA21M	SMA2	1.0114	1.0151
Mannum-Adelaide Pipeline Pumping Station No 3 Solar Farm – Dual MLF (Generation)	3.3	MAPS3PV1	SMA31M	SMA3	0.9802	0.9946
Mannum-Adelaide Pipeline Pumping Station No 3 Solar Farm – Dual MLF (Load)	3.3	MAPS3PV1	SMA31M	SMA3	0.9802	1.0149
Mintaro PS	132	MINTARO	SMPS	SMPS	0.9667	0.9746
Morgan Whyalla 1 SF	3.3	MWPS1PV1	SMW11M	SMW1	0.9759	0.9847
Morgan Whyalla 2 SF	3.3	MWPS2PV1	SMW21M	SMW2	0.9766	0.9880
Morgan Whyalla 3 SF	3.3	MWPS3PV1	SMW31M	SMW3	0.9787	0.9847
Morgan Whyalla 4 SF	3.3	MWPS4PV1	SMW41M	SMW4	0.9751	0.9796
Morphett Vale East 66	66	SATGS1	SMVG1L	SMVG	1.0012	1.0020
Mt Millar Wind Farm	33	MTMILLAR	SMTM1	SMTM	0.9162	0.9259
Murray Bridge - Hahndorf Pipeline SF 2 - Dual MLF (Generation)	11	MBPS2PV1	SMH21M	SMH2	0.9993	1.0006
Murray Bridge - Hahndorf Pipeline SF 2 - Dual MLF (Load)	11	MBPS2PV1	SMH21M	SMH2	1.0133	1.0151
North Brown Hill Wind Farm	275	NBHWF1	SBEL1A	SBEL	0.9467	0.9508
O.C.P.L. Unit 1	66	OSB-AG	SNBN1	SOCP	0.9994	0.9992
Para 66 Generation	66	SATGN1	SPAG1E	SPAG	0.9977	0.9991
Pelican Point PS	275	PPCCGT	SPPT	SPPT	0.9988	0.9984
Port Augusta Renewable Energy Park - Solar	275	PAREPS1	SDAP2P	SDAP	0.9608	0.9654
Port Augusta Renewable Energy Park - Wind	275	PAREPW1	SDAP1P	SDAP	0.9608	0.9654
Port Lincoln 3	33	POR03	SPL31P	SPL3	0.9724	0.9799
Port Lincoln PS	132	POR01	SPLN1	SPTL	0.9679	0.9822
Pt Stanvac PS	66	PTSTAN1	SMVE3P	SMVE	1.0025	1.0039
Quarantine PS Unit 1	66	QPS1	SQPS1	SQPS	0.9949	0.9946
Quarantine PS Unit 2	66	QPS2	SQPS2	SQPS	0.9949	0.9946
Quarantine PS Unit 3	66	QPS3	SQPS3	SQPS	0.9949	0.9946
Quarantine PS Unit 4	66	QPS4	SQPS4	SQPS	0.9949	0.9946
Quarantine PS Unit 5	66	QPS5	SQPS5Q	SQPS	0.9949	0.9946
Snapper Point PS	275	SNAPPER1	SNPT1S	SNPT	0.9996	0.9993
Snowtown Wind Farm	33	SNOWTWN1	SNWF1T	SNWF	0.8932	0.8968
Snowtown Wind Farm Stage 2 – North	275	SNOWNTH1	SBLWS1	SBLW	0.9613	0.9638
Snowtown Wind Farm Stage 2 – South	275	SNOWSTH1	SBLWS2	SBLW	0.9613	0.9638
Snuggery PS Units 1 to 3	132	SNUG1	SSGA1	SSPS	0.9608	0.9877
Starfish Hill Wind Farm	66	STARHLWF	SMVE2	SMVE	1.0025	1.0039

Generator	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Tailem Bend BESS 2 (Generation)	132	TB2BG1	STBB2T	STBB	1.0102	1.0079
Tailem Bend BESS 2 (Load)	132	TB2BL1	STBB3T	STBB	1.0102	1.0079
Tailem Bend Solar Farm	132	TBSF1	STBS1T	STBS	1.0090	1.0030
Tailem Bend Solar Farm 2	132	TB2SF1	STBB1T	STBB	1.0102	1.0079
Tatiara Meat Co	33	TATIARA1	SKET1E	SKET	1.0151	1.0175
The Bluff Wind Farm	275	BLUFF1	SBEL2P	SBEL	0.9467	0.9508
Torrens Island BESS (Generation)	275	TIBG1	STPB1T	STPB	0.9998	0.9996
Torrens Island BESS (Load)	275	TIBL1	STPB2T	STPB	0.9996	0.9997
Torrens Island PS B Unit 1	275	TORRB1	STSB1	STPS	0.9998	0.9997
Torrens Island PS B Unit 2	275	TORRB2	STSB2	STPS	0.9998	0.9997
Torrens Island PS B Unit 3	275	TORRB3	STSB3	STPS	0.9998	0.9997
Torrens Island PS B Unit 4	275	TORRB4	STSB4	STPS	0.9998	0.9997
Torrens Island PS Load	66	TORNL1	STSYL	STSY	1.0000	1.0000
Waterloo Wind Farm	132	WATERLWF	SWLE1R	SWLE	0.9547	0.9599
Wattle Point Wind Farm	132	WPWF	SSYP1	SSYP	0.8179	0.8073
Willogoleche Wind Farm	275	WGWF1	SWGL1W	SWGL	0.9498	0.9534
Wingfield 1 LFG PS	66	WINGF1_1	SKLB1W	SKLB	1.0023	1.0022
Wingfield 2 LFG PS	66	WINGF2_1	SNBN2W	SNBN	1.0003	0.9999

1.5 Tasmania marginal loss factors

Table 11 Tasmania loads

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Arthurs Lake	6.6	TAL2	0.9846	0.9726
Avoca	22	TAV2	1.0111	1.0032
Boyer SWA	6.6	TBYA	1.0161	1.0026
Boyer SWB	6.6	TBYB	1.0254	1.0116
Bridgewater	11	TBW2	1.0275	1.0266
Burnie	22	TBU3	0.9835	0.9846
Chapel St.	11	TCS3	1.0147	1.0128
Comalco	220	TCO1	1.0006	1.0007
Creek Road	33	TCR2	1.0150	1.0124
Derby	22	TDE2	0.9625	0.9581
Derwent Bridge	22	TDB2	0.9324	0.8965
Devonport	22	TDP2	0.9842	0.9817
Electrona	11	TEL2	1.0294	1.0289
Emu Bay	11	TEB2	0.9817	0.9836
Emu Bay 22	22	TEB3	0.9831	0.9836
Fisher (Rowallan)	220	TFI1	0.9642	0.9557
Fisher 220 DNSP	220	TFI2	0.9642	0.9557

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
George Town	22	TGT3	1.0019	1.0025
George Town (Basslink)	220	TGT1	1.0000	1.0000
Gordon	22	TGO2	0.9892	0.9930
Greater Hobart Area VTN		TVN1	1.0167	1.0142
Hadspen	22	THA3	0.9937	0.9878
Hampshire	110	THM2	0.9798	0.9818
Huon River	11	THR2	1.0285	1.0286
Kermandie	11	TKE2	1.0330	1.0326
Kingston	11	TKI2	1.0248	1.0249
Kingston	33	TK13	1.0206	1.0195
Knights Road	11	TKR2	1.0307	1.0301
Lindisfarne	33	TLF2	1.0172	1.0145
Meadowbank	22	TMB2	0.9957	0.9771
Mornington	33	TMT2	1.0184	1.0160
Mowbray	22	TMY2	0.9930	0.9867
New Norfolk	22	TNN2	1.0142	0.9988
Newton	11	TNT3	0.9542	0.9373
Newton	22	TNT2	0.9683	0.9635
North Hobart	11	TNH2	1.0143	1.0123
Norwood	22	TNW2	0.9923	0.9863
Palmerston	22	ТРМ3	0.9748	0.9633
Port Latta	22	TPL2	0.9615	0.9745
Que	22	TQU2	0.9741	0.9685
Queenstown	11	TQT3	0.9526	0.9424
Queenstown	22	TQT2	0.9565	0.9508
Railton	22	TRA2	0.9847	0.9814
Risdon	11	TRI3	1.0187	1.0150
Risdon	33	TRI4	1.0183	1.0151
Rokeby	11	TRK2	1.0221	1.0204
Rosebery	44	TRB2	0.9666	0.9599
Savage River	22	TSR2	0.9994	0.9965
Scottsdale	22	TSD2	0.9740	0.9670
Sheffield	22	TSH3	0.9761	0.9796
Smithton	22	TST2	0.9486	0.9645
Sorell	22	TSO2	1.0362	1.0361
St Leonard	22	TSL2	0.9925	0.9867
St Leonards 22kV - Scheduled Load	22	TSL3	0.9921	0.9857
St. Marys	22	TSM2	1.0316	1.0251
Starwood	110	TSW1	1.0008	1.0011
Tamar Region VTN		TVN2	0.9942	0.9887

Location	Voltage (kV)	TNI code	2024-25 MLF	2023-24 MLF
Тетсо	110	TTE1	1.0039	1.0041
Trevallyn	22	TTR2	0.9941	0.9878
Triabunna	22	TTB2	1.0452	1.0439
Tungatinah	22	TTU2	0.9335	0.8976
Ulverstone	22	TUL2	0.9819	0.9810
Waddamana	22	TWA2	0.9440	0.9295
Wayatinah	11	TWY2	0.9920	0.9819
Wesley Vale	22	TWV2	0.9810	0.9781

Table 12 Tasmania generation

Generator description	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Basslink (George Town)	220	BLNKTAS	TGT11	TGT1	1.0000	1.0000
Bastyan	220	BASTYAN	TFA11	TFA1	0.9313	0.9202
Bell Bay Three No.1	110	BBTHREE1	TBB11	TBB1	0.9977	0.9968
Bell Bay Three No.2	110	BBTHREE2	TBB12	TBB1	0.9977	0.9968
Bell Bay Three No.3	110	BBTHREE3	TBB13	TBB1	0.9977	0.9968
Bluff Point and Studland Bay Wind Farms	110	WOOLNTH1	TST11	TST1	0.8951	0.9112
Butlers Gorge	110	BUTLERSG	TBG11	TBG1	0.9269	0.8911
Catagunya	220	LI_WY_CA	TLI11	TLI1	0.9899	0.9809
Cethana	220	CETHANA	TCE11	TCE1	0.9580	0.9504
Cluny	220	CLUNY	TCL11	TCL1	0.9922	0.9857
Devils Gate	110	DEVILS_G	TDG11	TDG1	0.9628	0.9537
Fisher	220	FISHER	TFI11	TFI1	0.9642	0.9557
Gordon	220	GORDON	TGO11	TGO1	0.9622	0.9731
Granville Harbour Wind Farm	220	GRANWF1	TGH11G	TGH1	0.9473	0.9388
John Butters	220	JBUTTERS	TJB11	TJB1	0.9245	0.9208
Lake Echo	110	LK_ECHO	TLE11	TLE1	0.9293	0.8888
Lemonthyme	220	LEM_WIL	TSH11	TSH1	0.9678	0.9567
Liapootah	220	LI_WY_CA	TLI11	TLI1	0.9899	0.9809
Mackintosh	110	MACKNTSH	TMA11	TMA1	0.9190	0.9059
Meadowbank	110	MEADOWBK	TMB11	TMB1	0.9872	0.9688
Musselroe	110	MUSSELR1	TDE11M	TDE1	0.9199	0.9119
Paloona	110	PALOONA	TPA11	TPA1	0.9657	0.9572
Poatina	110	POAT110	TPM21	TPM2	0.9641	0.9555
Poatina	220	POAT220	TPM11	TPM1	0.9802	0.9733
Reece No.1	220	REECE1	TRCA1	TRCA	0.9212	0.9052
Reece No.2	220	REECE2	TRCB1	TRCB	0.9202	0.9068
Repulse	220	REPULSE	TCL12	TCL1	0.9922	0.9857
Rowallan	220	ROWALLAN	TFI12	TFI1	0.9642	0.9557

Generator description	Voltage (kV)	DUID	Connection Point ID	TNI code	2024-25 MLF	2023-24 MLF
Tamar Valley CCGT	220	TVCC201	TTV11A	TTV1	1.0000	1.0000
Tamar Valley OCGT	110	TVPP104	TBB14A	TBB1	0.9977	0.9968
Tarraleah	110	TARRALEA	TTA11	TTA1	0.9315	0.8977
Trevallyn	110	TREVALLN	TTR11	TTR1	0.9900	0.9825
Tribute	220	TRIBUTE	TTI11	TTI1	0.9246	0.9089
Tungatinah	110	TUNGATIN	TTU11	TTU1	0.9078	0.8782
Wayatinah	220	LI_WY_CA	TLI11	TLI1	0.9899	0.9809
Wild Cattle Hill Wind Farm	220	CTHLWF1	TWC11C	TWC1	0.9908	0.9836
Wilmot	220	LEM_WIL	TSH11	TSH1	0.9678	0.9567

2 Changes in marginal loss factors

2.1 Marginal loss factors in the NEM

The MLF for a connection point represents the marginal electrical transmission losses in electrical power flow between that connection point and the Regional Reference Node (RRN) for the region in which the connection point is located.

An MLF below 1 indicates that an incremental increase in power flow from the connection point to the RRN would increase total losses in the network. An MLF above 1 indicates the opposite.

According to the current NEM design, the difference between the cost of electricity at a connection point remote from the RRN and the cost of electricity at the RRN is directly proportional to the MLF for the connection point. For example, if the MLF for a connection point is 0.9, then the effective values of electricity purchased or sold at that connection point will be 90% of the regional reference price. Consequently, a fall in MLF at a connection point is likely to have a positive impact on customers and a negative impact on generators.

More information on the treatment of electricity losses in the NEM is available on AEMO's website4.

2.2 Reasons marginal loss factors change

There are three main reasons why the MLF for a connection point changes from year-to-year:

- Changes to projected power flows over the transmission network caused by projected changes to power system generation and demand, including building new generation, retirement of power stations, and revised electricity consumption forecasts.
 - If the projected power flow from a connection point towards the RRN increases, then the MLF for that connection point would be expected to decrease. Conversely, if the projected power flow from a connection point towards the regional reference node decreases, then the MLF for that connection point would be expected to increase.
- 2. Forecast variations in seasonal patterns, diurnal patterns, intra-year commencement of operation, intra-year cessation of operation.
 - As MLF outcomes are volume weighted, year-on-year variations in patterns of either consumption or export (load and generation respectively) can result in material variations in MLF outcomes. For further detail on the impact of volume weighting on MLF outcomes, please refer to Appendix A3.
- 3. Changes to the impedance of the transmission network caused by augmentation of the transmission network, such as building new transmission lines.
 - If augmentations decrease the impedance of the transmission network between a connection point and the RRN, then the MLF for the connection point would be expected to move closer to 1.

⁴ AEMO, Treatment of Loss Factors in the National Electricity Market,1 July 2012, at https://www.aemo.com.au/-/media/Files/Electricity/NEM/ Security and Reliability/Loss Factors and Regional Boundaries/2016/Treatment of Loss Factors in the NEM.pdf.

The location of new generation projects and load developments on the transmission and distribution network has a significant impact on the MLFs in an area. As more generation is connected to electrically weak areas of the network that are remote from the RRN, MLFs in these areas will continue to decline.

2.3 Changes between the preliminary 2024-25 MLFs and the final 2024-25 MLFs

In January 2024, AEMO published a preliminary report containing indicative MLFs for 2024-25. While the preliminary report is intended to provide stakeholders with early insight into possible future MLF outcomes, there are several variances between the input data utilised in the preliminary and draft/final MLF studies. Table 13 provides a high level summary of these differences.

Table 13 Preliminary vs draft/final study variations

Item	Preliminary	Draft/final
New generation projects	Inclusion based on generator project status in October 2023 Generation Information page ^A . Projects are included where the status is COM or COM* ^B .	Inclusion based on generator project status in February 2024 Generation Information page ^A . Projects are included where the status is COM or COM*.
Load profiles	Scaled historical load profiles from 2022-23.	Forecast load profiles for 2024-25.
Network model	2023-24 MLF study network model.	Revised network model incorporating future augmentations that are committed.
Intra-regional limit management	Intra-regional limits as identified and incorporated into the 2023-24 MLF study.	Intra-regional limits reviewed for 2024-25, revised and incorporated into the 2024-25 MLF study.

A. The Generation Information page provides stakeholders with information on the capacity of existing, withdrawn, committed, and proposed generation projects in the NEM. See https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/Generation-information.

2.4 Changes between 2023-24 MLFs and 2024-25 MLFs

This section summarises the changes in MLFs for 2023-24 compared to the 2024-25 MLFs at a sub-regional level, and the general trends driving the changes. Appendix A2 provides more detailed information on the inputs, methodology, and assumptions for the 2024-25 calculations, and key changes from 2023-24.

For further details on how MLFs are calculated, refer to Section A1.2.

Figure 1 shows the annual projected gigawatt-hours (GWh) flows for all interconnectors within the NEM for both the 2023-24 and 2024-25 MLF studies.

B. Committed (COM) projects meet all five of AEMO's commitment criteria (relating to site, components, planning, finance, and date). Committed* (COM*) projects are classified as Advanced, have commenced construction or installation, and meet AEMO's site, finance, and date criteria, but are required to meet only one of the components or planning criteria.

Figure 1 2023-24 vs 2024-25 MLF interconnector flow projections

2.4.1 Changes to marginal loss factors in Queensland

Figure 2 shows a geographical representation of MLF variations at Queensland connection points between 2023-24 and 2024-25. Table 14 shows the average sub-regional year-on-year MLF variations between 2023-24 and 2024-25.

Primary drivers of changes

The primary drivers of change in Queensland are variations in projected generation within Queensland.

The cause of these variations is largely a projected decrease in the output of thermal generation within northern and central Queensland. This resulted in a decrease in southerly flows from northern and central Queensland, and in turn upward pressure on MLF outcomes in both northern and central Queensland.

Notable changes

The northern sub-region average MLFs have increased for both generation and load, by 1.45% and 1.04% respectively.

The central sub-region average MLFs have increased for both generation and load, by 0.95% and 1.23% respectively.

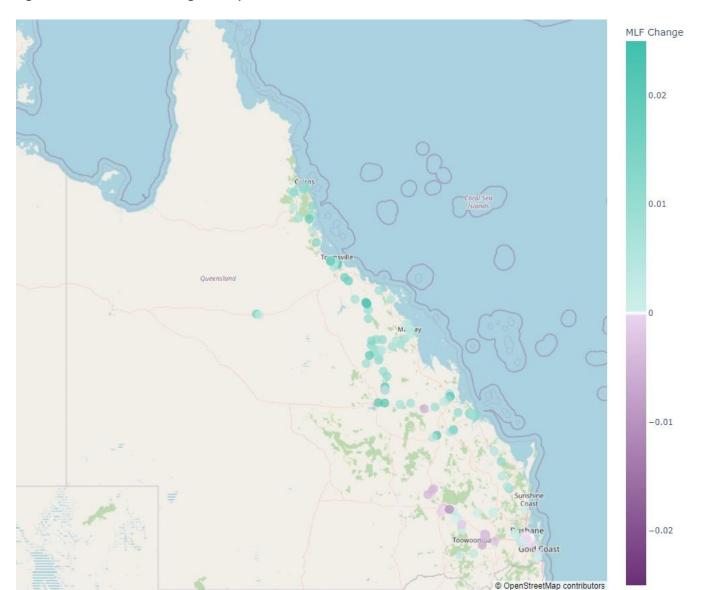


Figure 2 Queensland changes compared to 2024-25 MLFs

Table 14 Queensland sub-region year-on-year average MLF variation

Sub-region	Average MLF change 2023-24 to 2024-25				
	Gen Load				
Central	0.95%	1.23%			
North	1.45%				
South-east	-0.10% 0.00				
South-west	-0.13%	-0.11%			

2.4.2 Changes to marginal loss factors in New South Wales

Figure 3 shows a geographical representation of MLF variations at New South Wales connection points between 2023-24 and 2024-25. Table 15 shows the average sub-regional year on year MLF variations between 2023-24 and 2024-25.

Primary drivers of changes

The primary drivers of change in New South Wales are increases in local generation capacity, variations to constraints in south-west New South Wales and increased imports from Victoria.

Notable changes

The northern New South Wales sub-region average MLFs has increased for both generation and load, by 1.36% and 0.63% respectively. This has primarily been driven by a forecast variation in the diurnal pattern of NSW-QLD flows (despite net being similar). The diurnal variation has resulted in decreased southerly flow during daylight hours and increased southerly flow overnight. This variation has been favourable to solar generation within northern New South Wales.

The western New South Wales sub-region average MLFs have decreased for both generation and load, by -0.57% and -0.11% respectively. This has been driven by an increase in local generation capacity.

The south-western New South Wales sub-region average MLFs have decreased for both generation and load, by -3.21% and -3.32% respectively. This has been driven by a reduction in congestion within the south-west New South Wales sub-region resulting from revisions to local constraints which has allowed for an increase in local generation output.

The Snowy sub-region average MLFs have reduced for both generation and load, by -1.1% and -0.79% respectively. This has been driven by and increase in imports from Victoria and increased output of generation in south-west New South Wales.

Constitution of the state of th

Figure 3 New South Wales changes compared to 2024-25 MLFs

Table 15 New South Wales sub-region year-on-year average MLF variation

Sub-region	Average MLF change 2023-24 to 2024-25				
	Gen Load				
ACT	-1.62%	-0.71%			
Hunter	0.24%	0.11%			
North	1.36%	0.63%			
South-west	-3.21%	-3.32%			
Snowy	-1.11%	-0.79%			
Sydney	-0.21%	-0.02%			
West	-0.57%	-0.11%			

© OpenStreetMap contributors

2.4.3 Changes to marginal loss factors in Victoria

Figure 4 shows a geographical representation of MLF variations at Victorian connection points between 2023-24 and 2024-25. Table 16 shows the average sub-regional year on year MLF variations between 2023-24 and 2024-25.

Primary drivers of changes

The primary drivers of change in Victoria are variations in projected generation (partially driven by reduced congestion in south-west New South Wales have contributed to the outcomes in north-west Victoria) and a reduction in Victorian consumption forecasts between the 2023-24 and 2024-25 (in terms of operational consumption, 42,900 GWh⁵ and 39,917 GWh respectively).

Notable changes

The north-west Victoria sub-region average MLFs decreased for both generation and load, by -3.21% and -1.84% respectively. This has been driven by reduced congestion, with the area and south-west New South Wales increasing flows from north-west Victoria to the RRN.

Both northern and central Victoria sub-region average MLFs have decreased except for load in central Victoria. For generation and load the decreases are -0.78% and -0.56% respectively for northern Victoria and -1.00% and 0.32% respectively for central Victoria.

⁵ A. Forecasting operational energy – as sent out energy was sourced from the most recent published Electricity Statement of Opportunities (2022 ESOO for 2023-24 and 2023 ESOO for 2024-25).

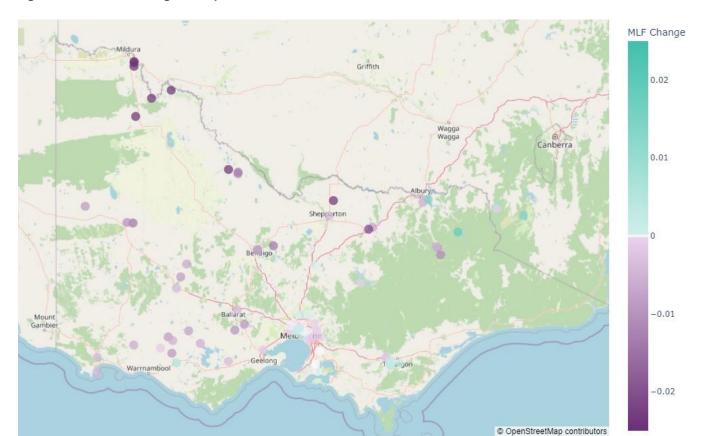


Figure 4 Victoria changes compared to 2024-25 MLFs

Table 16 Victoria sub-region year-on-year average MLF variation

Sub-region	Average MLF change 2023-24 to 2024-25			
	Gen	Load		
Central	-0.97%	0.36%		
Latrobe Valley	0.01%	0.22%		
Melbourne	0.00%	-0.02%		
North	-0.35%	-0.40%		
North-west	-3.41%	-2.10%		
West	-0.66%	-0.13%		

2.4.4 Changes to marginal loss factors in South Australia

Figure 5 shows a geographical representation of MLF variations at South Australian connection points between 2023-24 and 2024-25. Table 17 shows the average sub-regional year on year MLF variations between 2023-24 and 2024-25.

Primary drivers of changes

The primary driver of change in South Australia is decreased consumption within South Australia. The majority of the anticipated decrease is located in Adelaide and has thus reduced flows from remote connection points to the RRN.

While PEC has been incorporated, for 2024-25 it has not had a material impact on MLF outcomes given the limited transfer capacity associated with stage 1.

Notable changes

With the exception of load in south-east South Australia, average MLFs have reduced. The increase in the average load MLF in south-east South Australia is predominately the result of the weighting of a single load, rather than an underlying theme.

Figure 5 South Australia changes to 2024-25 MLFs

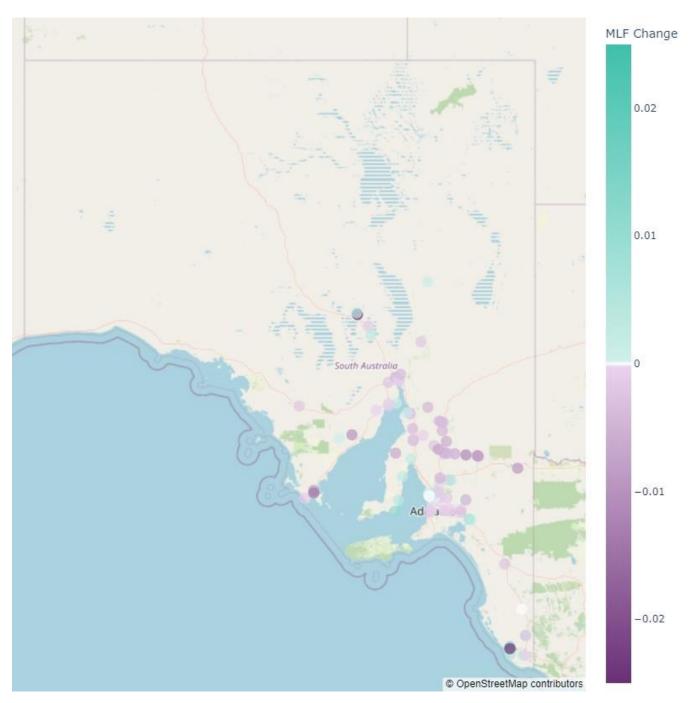


Table 17 South Australia sub-region year-on-year average MLF variation

Sub-region	Average MLF change 2023-24 to 2024-25			
	Gen	Load		
Adelaide	-0.13%	-0.20%		
North	-0.22%	-0.17%		
Riverland	NA	-0.86%		
South-east	-0.22%	0.32%		

2.4.5 Changes to marginal loss factors in Tasmania

Figure 6 shows a geographical representation of MLF variations at Tasmanian connection points between 2023-24 and 2024-25. Table 18 shows the average sub-regional year on year MLF variations between 2023-24 and 2024-25.

Primary drivers of changes

The primary drivers of change in Tasmania are a projected variation in generation within Tasmania which is driven by variations in water storage levels, projected generation availability, and a projected increase in imports from the mainland via Basslink between 2023-24 and 2024-25.

Notable changes

The majority of sub-regions with the exception of generation at George Town have seen increases in average MLF outcomes. This is due to the decreased flows from these sub-regions to the RRN which is supported by the increase in southerly Basslink flows.

Burnie
Change

Tosmania

0.01

Figure 6 Tasmania changes to 2024-25 MLFs

Table 18 Tasmania sub-region year-on-year average MLF variation

Sub-region	Average MLF change 2023-24 to 2024-25				
	Gen Load				
George Town	-0.11%	0.08%			
North-west	0.98%	0.67%			
North	0.79%				
South	2.16% 1.179				
West coast	1.34%	1.07%			

-0.01

-0.02

© OpenStreetMap contributors

3 Inter-regional loss factor equations

This section describes the inter-regional loss factor equations.

Inter-regional loss factor equations describe the variation in loss factor at one RRN with respect to an adjacent RRN. These equations are necessary to cater for the large variations in loss factors that may occur between RRNs as a result of different power flow patterns. This is important in minimising the distortion of economic dispatch of generating units.

Loss factor equation (South Pine 275 referred to Sydney West 330)

 $= 0.8460 + 1.7914E-04*NQ_t + 1.8514E-05*Qd + 7.7016E-06*Nd$

Loss factor equation (Sydney West 330 referred to Thomastown 66)

= 1.1041 + 1.6452E-04*VN_t + 2.1896E-06*Vd + 1.2083E-06*Nd + -6.4190E-05*Sd

Loss factor equation (Torrens Island 66 referred to Thomastown 66)

 $= 0.9936 + 2.2992E-04*VSA_t + -1.6267E-05*Vd + 6.2183E-05*Sd$

Where:

Qd = Queensland demand

Vd = Victorian demand

Nd = New South Wales demand

Sd = South Australian demand

NQt = transfer from New South Wales to Queensland

VN_t = transfer from Victoria to New South Wales

VSA_t = transfer from Victoria to South Australia

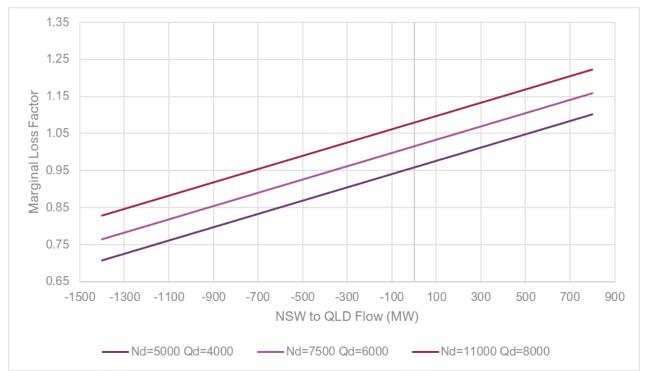


Figure 7 MLF (South Pine 275 referred to Sydney West 330)

Table 19 South Pine 275 referred to Sydney West 330 MLF versus New South Wales to Queensland flow coefficient statistics

Coefficient	Qd	Nd	NQt	Constant
Coefficient value	1.8514E-05	7.7016E-06	1.7914E-04	0.846

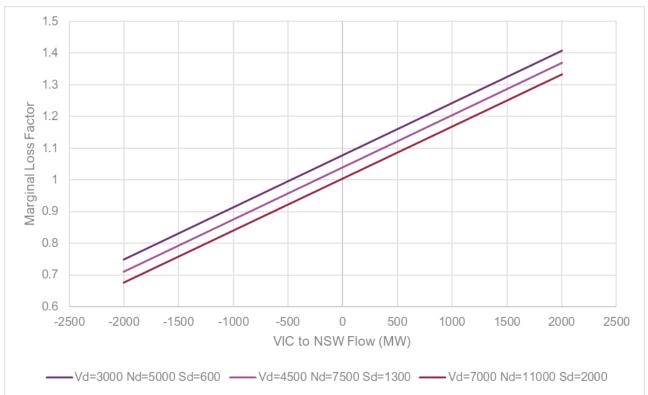


Figure 8 MLF (Sydney West 330 referred to Thomastown 66)

Table 20 Sydney West 330 referred to Thomastown 66 MLF versus Victoria to New South Wales flow coefficient statistics

Coefficient	Sd	Nd	Vd	VNt	Constant
Coefficient value	-6.4190E-05	1.2083E-06	2.1896E-06	1.6452E-04	1.1041

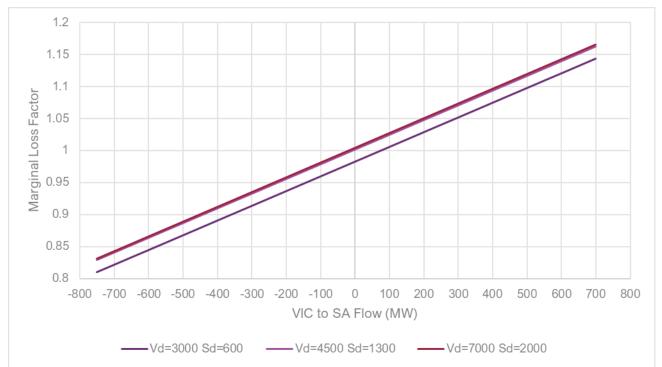


Figure 9 MLF (Torrens Island 66 referred to Thomastown 66)

Table 21 Torrens Island 66 referred to Thomastown 66 MLF versus Victoria to South Australia flow coefficient statistics

Coefficient	Sd	Vd	VSAt	Constant
Coefficient value	6.2183E-05	-1.6267E-05	2.2992E-04	0.9936

4 Inter-regional loss equations

This section describes how inter-regional loss equations are derived.

Inter-regional loss equations are derived by integrating the equation (Loss factor – 1) with respect to the interconnector flow, i.e.:

Losses = (Loss factor - 1) dFlow

South Pine 275 referred to Sydney West 330 notional link average losses

 $=(-0.1540 + 1.8514E-05*Qd + 7.7016E-06*Nd)*NQt + 8.9568E-05*(NQt)^2$

Sydney West 330 referred to Thomastown 66 notional link average losses

 $= (0.1041 + 2.1896E-06*Vd + 1.2083E-06*Nd + -6.4190E-05*Sd)*VNt + 8.2260E-05*(VNt)^{2}$

Torrens Island 66 referred to Thomastown 66 notional link average losses

= $(-0.0064 + -1.6267E-05*Vd + 6.2183E-05*Sd)*VSA_t + 1.1496E-04*(VSA_t)^2$

Where:

Qd = Queensland demand

Vd = Victorian demand

Nd = New South Wales demand

Sd = South Australia demand

NQt = transfer from New South Wales to Queensland

VN_t = transfer from Victoria to New South Wales

VSAt = transfer from Victoria to South Australia

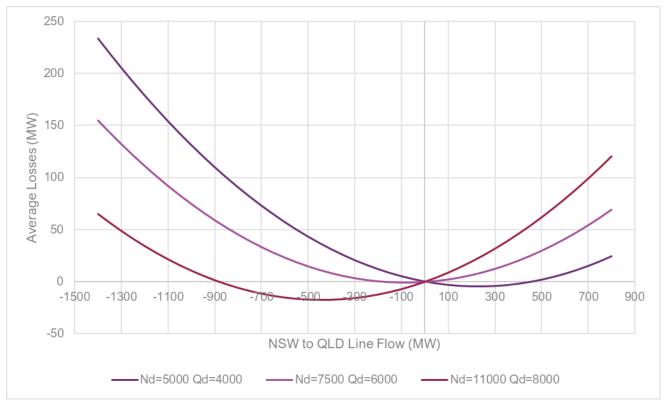


Figure 10 Average losses for New South Wales – Queensland notional link

New South Wales to Queensland notional link losses versus New South Wales to Queensland notional link flow

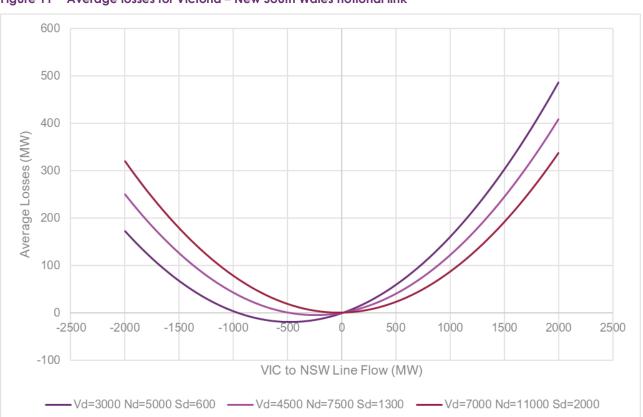
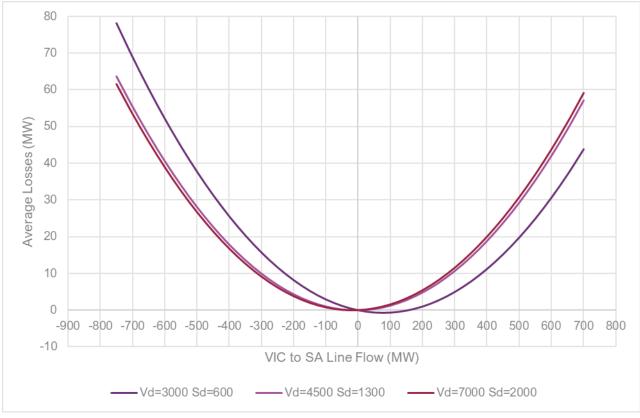



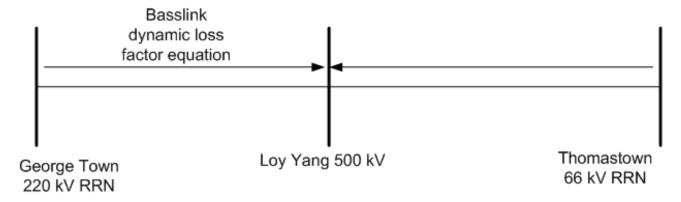
Figure 11 Average losses for Victoria – New South Wales notional link

Victoria to New South Wales notional link losses versus Victoria to New South Wales notional link flow

Figure 12 Average losses for Victoria – South Australia notional link

Victoria to South Australia notional link losses versus Victoria to South Australia notional link flow

5 Basslink, Murraylink, Terranora loss equations


This section describes the loss equations for the direct current (DC) interconnectors.

5.1 Basslink

The loss factor model for Basslink is made up of the following parts:

- George Town 220 kilovolts (kV) MLF referred to Tasmania RRN = 1.0000.
- Basslink (Loy Yang Power Station [PS] Switchyard) 500 kV MLF referred to Victorian RRN is 0.9852 when exporting power to Tasmania and 0.9777 when importing power from Tasmania.
- Receiving end dynamic loss factor referred to the sending end = 0.99608 + 2.0786 * 10⁻⁴ * P(receive), where P(receive) is the Basslink flow measured at the receiving end.

Figure 13 Basslink loss factor model

The equation describing the losses between the George Town 220 kV and Loy Yang 500 kV connection points can be determined by integrating the (loss factor equation – 1), giving:

$$P(\text{send}) = P(\text{receive}) + [(-3.92 \times 10^{-3}) * P(\text{receive}) + (1.0393 \times 10^{-4}) * P(\text{receive})^2 + 4]$$

where:

P(send): Power in megawatts (MW) measured at the sending end,

P(receive): Power in MW measured at the receiving end.

The model is limited from 40 MW to 630 MW. When the model falls below 40 MW, this is within the ±50 MW 'no-go zone' requirement for Basslink operation.

5.2 Murraylink

Murraylink is a regulated interconnector. In accordance with clause 3.6.1(a) of the Rules, the Murraylink loss model consists of a single dynamic MLF from the Victorian RRN to the South Australian RRN.

The measurement point is the 132 kV connection to the Monash converter, which effectively forms part of the boundary between the Victorian and South Australian regions.

The losses between the Red Cliffs 220 kV and Monash 132 kV connection points are given by the following equation:

Losses =
$$(0.0039 * Flow_t + 2.8177 * 10^{-4} * Flow_t^2)$$

AEMO determined the following Murraylink MLF model using regression analysis:

Murraylink MLF (Torrens Island 66 referred to Thomastown 66) = 0.9264 + 2.4106E-03*Flowt

This model, consisting of a constant and a Murraylink flow coefficient, is suitable because most of the loss is due to variations in the Murraylink flow, and other potential variables do not improve the model.

The regression statistics for this Murraylink loss factor model are presented in the following table:

Table 22 Regression statistics for Murraylink

Coefficient	Murraylink flow	Constant
Coefficient value	2.4106E-03	0.9264

The loss model for a regulated Murraylink interconnector can be determined by integrating (MLF-1), giving:

Murraylink loss = $-0.0736*Flow_t + 1.2053E-03*(Flow_t)^2$

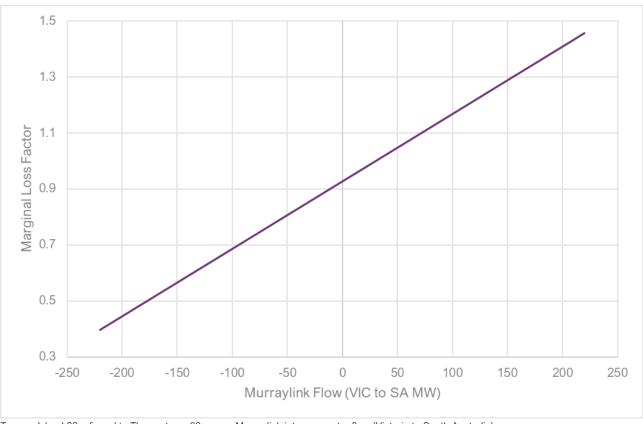


Figure 14 Murraylink MLF (Torrens Island 66 referred to Thomastown 66)

Torrens Island 66 referred to Thomastown 66 versus Murraylink interconnector flow (Victoria to South Australia).

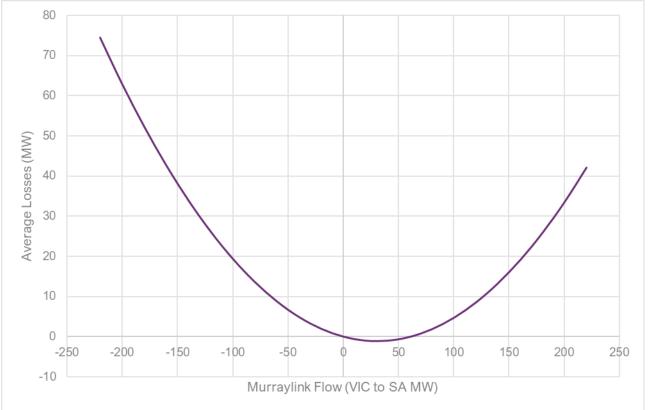


Figure 15 Average losses for Murraylink interconnector (Torrens Island 66 referred to Thomastown 66)

Murraylink notional link losses versus Murraylink flow (Victoria to South Australia).

5.3 Terranora

Terranora is a regulated interconnector. In accordance with clause 3.6.1(a) of the Rules, the Terranora loss model consists of a single dynamic MLF from the New South Wales RRN to the Queensland RRN.

The measurement point is 10.8 km north from Terranora on the two 110 kV lines between Terranora and Mudgeeraba, which effectively forms part of the boundary between the New South Wales and Queensland regions.

The losses between the Mullumbimby 132 kV and Terranora 110 kV connection points are given by the following equation:

Losses =
$$(-0.0013 * Flow_t + 2.7372 * 10^{-4} * Flow_t^2)$$

AEMO determined the following Terranora MLF model using regression analysis:

Terranora interconnector MLF (South Pine 275 referred to Sydney West 330)

This model consisting of a constant and a Terranora flow coefficient is suitable because most of the loss is due to variations in the Terranora flow and other potential variables do not improve the model.

The regression statistics for this Terranora loss factor model are presented in the following table:

Table 23 Regression statistics for Terranora

Coefficient	Terranora flow	Constant
Coefficient value	5.4881E-03	1.0425

The loss model for a regulated Terranora interconnector can be determined by integrating (MLF-1), giving:

 $Terranora\ loss = \quad 0.0425*Flow_t + \quad 2.7440E-03*(Flow_t)^2$

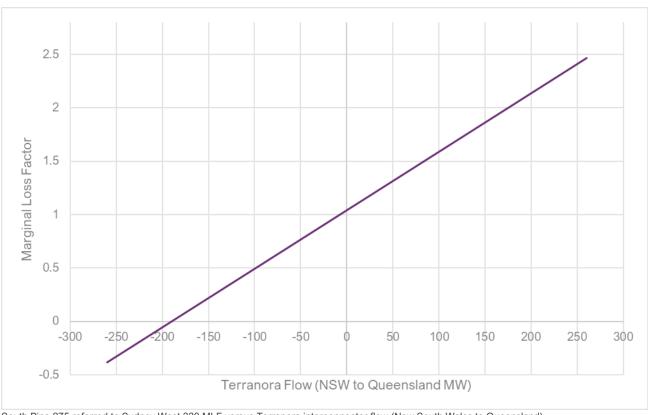


Figure 16 Terranora interconnector MLF (South Pine 275 referred to Sydney West 330)

South Pine 275 referred to Sydney West 330 MLF versus Terranora interconnector flow (New South Wales to Queensland)

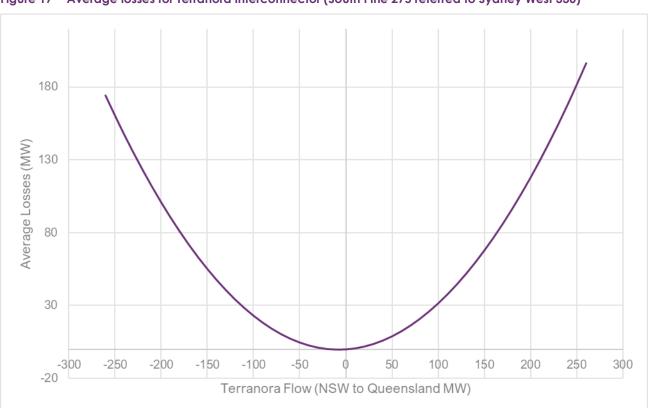


Figure 17 Average losses for Terranora interconnector (South Pine 275 referred to Sydney West 330)

Terranora interconnector notional link losses versus flow (New South Wales to Queensland)

6 Proportioning of inter-regional losses to regions

This section details how the inter-regional losses are proportioned by the National Electricity Market Dispatch Engine (NEMDE).

NEMDE implements inter-regional loss factors by allocating the inter-regional losses to the two regions associated with a notional interconnector.

The proportioning factors are used to allocate the inter-regional losses to two regions by an increment of load at one RRN from the second RRN. The incremental changes to the inter-regional losses in each region are found from changes to interconnector flow and additional generation at the second RRN.

The average proportion of inter-regional losses in each region constitutes a single static loss factor.

The following table provides the factors used to allocate inter-regional losses to the associated regions for the 2024-25 financial year:

Table 24 Factors for inter-regional losses

Notional interconnector	Proportioning factor	Applied to	
Queensland – New South Wales (QNI)	0.6325	New South Wales	
Queensland – New South Wales (Terranora Interconnector)	0.7014	New South Wales	
Victoria – New South Wales (VNI)	0.3583	Victoria	
Victoria – South Australia (Heywood)	0.6684	Victoria	
Victoria – South Australia (Murraylink)	0.702	Victoria	

7 Regions and regional reference nodes

This section describes the NEM regions, the RRN for each region and regional boundaries.

7.1 Regions and Regional Reference Nodes

Table 25 Regions and Regional Reference Nodes

Region	Regional Reference Node
Queensland	South Pine 275 kV node
New South Wales	Sydney West 330 kV node
Victoria	Thomastown 66 kV node
South Australia	Torrens Island PS 66 kV node
Tasmania	George Town 220 kV node

7.2 Region boundaries

Physical metering points defining the region boundaries are at the following locations.

7.2.1 Between the Queensland and New South Wales regions

- At Dumaresq Substation on the 8L and 8M Dumaresq to Bulli Creek 330 kV lines⁶.
- 10.8 km north of Terranora on the two 110 kV lines between Terranora and Mudgeeraba (lines 757 & 758).
 Metering at Mudgeeraba adjusted for that point.

7.2.2 Between the New South Wales and Victoria regions

- At Wodonga Terminal Station (WOTS) on the 060 Wodonga to Jindera 330 kV line.
- At Red Cliffs Terminal Station (RCTS) on the Red Cliffs to Buronga 220 kV line.
- At Murray Switching Station (MSS) on the MSS to Upper Tumut Switching Station (UTSS) 330 kV lines.
- At MSS on the MSS to Lower Tumut Switching Station (LTSS) 330 kV line.
- At Guthega Switching Station on the Guthega to Jindabyne PS 132 kV line.
- At Guthega Switching Station on the Guthega to Geehi Dam Tee 132 kV line.
- At Buronga Switching Station on the Buronga to Bundey 330kV line (following the commencement of operation of PEC stage 1.)

7.2.3 Between the Victoria and South Australia regions

At South East Switching Station (SESS) on the SESS to Heywood 275 kV lines.

⁶ The metering at Dumaresq is internally scaled to produce an equivalent flow at the New South Wales/Queensland State borders.

- At Monash Switching Station on the Berri (Murraylink) converter 132 kV line.
- At Buronga Switching Station on the Buronga to Bundey 330kV line (following the commencement of operation of PEC stage 1.)

7.2.4 Between the Victoria and Tasmania regions

Basslink is not a regulated interconnector. It has the following metering points:

- At Loy Yang 500 kV PS.
- At George Town 220 kV Switching Station.

8 Virtual transmission nodes

This section describes the configuration of the different virtual transmission nodes (VTNs) that have been advised to AEMO at time of publication.

VTNs are aggregations of adjacent transmission network connection points for which a single MLF is applied. AEMO has considered the following VTNs which have been agreed with the Australian Energy Regulator (AER).

8.1 New South Wales virtual transmission nodes

Table 26 New South Wales virtual transmission nodes

VTN TNI code	Description	Associated transmission connection points (TCPs)
NEV1	Far North	Muswellbrook 132, Liddell 33
NEV2	North of Broken Bay	Brandy Hill 11, Charmhaven 11, Gosford 66, Gosford 33, West Gosford 11, Munmorah STS 33, Lake Munmorah 132, Newcastle 132, Ourimbah 132, Ourimbah 66, Ourimbah 33, Somersby 11, Tomago 132, Tuggerah 132, Vales Pt 132, Waratah 132, Wyong 11
NEV3	South of Broken Bay	Alexandria 33, Beaconsfield North 132, Beaconsfield South 132, Belmore Park 11, Bunnerong 132, Bunnerong 33, Belmore Park 132, Campbell Street 11, Campbell Street 132, Canterbury 33, Green Square 11, Homebush Bay 11, Hurstville North 11, Haymarket 132, Kurnell 132, Kogarah 11, Lane Cove 132, Meadowbank 11, Marrickville 11, Mason Park 132, Peakhurst 33, Macquarie Park 11, Macquarie Park 33, Potts Hill 132, Potts Hill 11, Rockdale 11, Rookwood Road 132, Rose Bay 11, Strathfield South 11, Sydney East 132, Sydney North 132, St Peters 11, Sydney West 132, Sydney South 132, Top Ryde 11, Waverley 11
AAVT	ACT	Angle Crossing 132, Belconnen 132, City East 132, Civic 132, East Lake 132, Gilmore 132, Gold Creek 132, Latham 132, Telopea Park 132, Theodore 132, Wanniassa 132, Woden 132

8.2 South Australia virtual transmission nodes

The SJP1 VTN for South Australia includes all South Australian load transmission connection points, excluding:

- Snuggery Industrial, as nearly its entire capacity services an industrial facility at Millicent.
- Whyalla MLF, as its entire capacity services an industrial plant in Whyalla.

8.3 Tasmania virtual transmission nodes

Table 27 Tasmania virtual transmission nodes

VTN TNI code	Description	Associated TCPs
TVN1	Greater Hobart Area	Chapel Street 11, Creek Road 33, Lindisfarne 33, Mornington 33, North Hobart 11, Risdon 33 and Rokeby 11.
TVN2	Tamar Region	Hadspen 22, Mowbray 22, Norwood 22, St Leonards 22, Trevallyn 22, George Town 22

A1. Background to marginal loss factors

This section summarises the method AEMO uses to account for electricity losses in the NEM. It also specifies AEMO's Rules responsibilities related to regions, calculation of MLFs, and calculation of inter-regional loss factor equations.

The NEM uses marginal costs to set electricity prices that need to include pricing of transmission electrical losses.

For electricity transmission, electrical losses are a transport cost that needs to be recovered. A feature of electrical losses is that they also increase with an increase in the electrical power transmitted. That is, the more a transmission line is loaded, the higher the percentage losses. Thus, the price differences between the sending and receiving ends is not determined by the average losses, but by the marginal losses of the last increment of electrical power delivered.

Electrical power in the NEM is traded through the spot market managed by AEMO. The central dispatch process schedules generation to meet demand to maximise the value of trade.

Static MLFs represent intra-regional electrical losses of transporting electricity between a connection point and the RRN. In the dispatch process, generation prices within each region are adjusted by MLFs to determine dispatch of generation.

Dynamic inter-regional loss factor equations calculate losses between regions. Depending on flows between regions, inter-regional losses also adjust the prices in determining generation dispatch to meet demand.

AEMO calculates the Regional Reference Price (RRP) for each region, which is then adjusted by reference to the MLFs between customer connection points and the RRN.

A1.1 Rules requirements

Clause 2A.1.3 of the Rules requires AEMO to establish, maintain, review and publish by 1 April each year a list of regions, RRNs, and the market connection points (represented by TNIs) in each region.

Rule 3.6 of the Rules requires AEMO to calculate the inter-regional loss factor equations (clause 3.6.1) and intra-regional loss factors (MLFs) (clause 3.6.2) by 1 April each year that will apply for the next financial year.

Clauses 3.6.1, 3.6.2 and 3.6.2A specify the requirements for calculating the inter-regional loss factor equations and MLFs, and the data used in the calculation.

The Rules generally require AEMO to calculate and publish a single, volume-weighted average, intra-regional MLF for each connection point. Clause 3.6.2(b)(2)(i) requires AEMO to calculate and publish dual MLFs for connection points where AEMO determines in accordance with its Methodology that one MLF does not represent, as closely as is reasonably practicable, the average marginal transmission network losses for active energy generation and consumption.

A1.2 Application of marginal loss factors

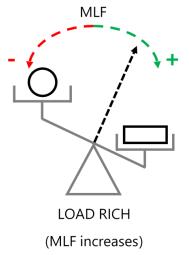
Under marginal pricing, the spot price for electricity is the incremental cost of additional generation (or demand reduction) for each spot market trading interval.

Consistent with this, the marginal losses are the incremental increase in total losses for each incremental additional unit of electricity. The MLF of a connection point represents the marginal losses to deliver electricity to that connection point from the RRN.

The tables in Section 1 show the MLFs for each region. The price of electricity at a TNI is the price at the RRN multiplied by the MLF. Depending on network and loading configurations MLFs vary, ranging from below 1.0 to above 1.0.

A1.2.1 Marginal loss factors greater than 1.0

At any instant at a TNI, the marginal value of electricity will equal the cost of generating additional electrical power at the RRN and transmitting it to that point. Any increase or decrease in total losses is then the marginal loss associated with transmitting electricity from the RRN to this TNI. If the marginal loss is positive, less power can be taken from this point than at the RRN, the difference having been lost in the network. In this case, the MLF is above 1.0. This typically applies to loads but would also apply to generation in areas where the local load is greater than the local level of generation.


For example, a generating unit supplying an additional 1 MW at the RRN may find that a customer at a connection point can only receive an additional 0.95 MW. Marginal losses are 0.05 MW, or 5% of generation, resulting in an MLF of 1.05.

Marginal loss factors greater than 1.0 – simplified

Figure 18 shows this effect in a simple manner using a scale as an analogy. While this is an oversimplification of the underlying drivers of MLF outcomes, thinking of changes as being driven by localised shifts in load/generation balance can be a helpful way to understand MLF outcomes.

In particular, expanding this thinking to interconnector behaviour – where an interconnector exporting can be thought of as 'load' and importing as 'generation' – can help with understanding year-on-year variations in MLF outcomes at connection points in close proximity to interconnectors.

Figure 18 MLFs greater than 1.0 simplified

A1.2.2 Marginal loss factors less than 1.0

Losses increase with distance, so the greater the distance between the RRN and a connection point, the higher the MLF. However additional line flow only raises total losses if it moves in the same direction as existing net flow. At any instant, when additional flow is against net flow, total network losses are reduced. In this case, the MLF is

below 1.0. This typically applies to generation but would also apply to loads in areas where the local generation level is greater than local load.

Using the example above, if net flow is in the direction from the connection point to the RRN, a generating unit at the RRN is only required to supply an additional 0.95 MW to meet an additional load of 1 MW at the connection point. Marginal losses are then -0.05 MW, or 5% reduction in generation, resulting in an MLF of 0.95.

Marginal loss factors less than 1.0 - simplified

Figure 19 shows this effect in a simple manner using a scale as an analogy. While this is an oversimplification of the underlying drivers of MLF outcomes, thinking of changes as being driven by localised shifts in load/generation balance can be a helpful way to understand MLF outcomes.

In particular, expanding this thinking to interconnector behaviour – where an interconnector exporting can be thought of as 'load' and importing as 'generation' – can help with understanding year-on-year variations in MLF outcomes at connection points in close proximity to interconnectors.

GENERATION RICH
(MLF decreases)

MLFs less than 1.0 simplified

Figure 19

A1.2.3 Marginal loss factors impact on National Electricity Market settlements

For settlement purposes, the value of electricity purchased or sold at a connection point is multiplied by the connection point MLF. For example:

A **Market Customer** at a connection point with an MLF of 1.05 purchases \$1,000 of electricity. The MLF of 1.05 multiplies the purchase value to $1.05 \times 1,000 = 1,050$. The higher purchase value covers the cost of the electrical losses in transporting electricity to the Market Customer's connection point from the RRN.

A **Market Generator** at a connection point with an MLF of 0.95 sells \$1,000 of electricity. The MLF of 0.95 multiplies the sales value to $0.95 \times 1,000 = 950 . The lower sales value covers the cost of the electrical losses in transporting electricity from the Market Generator's connection point to the RRN.

Therefore, it follows that in the settlements process:

- Higher MLFs tend to advantage, and lower MLFs tend to disadvantage, generation connection points.
- Higher MLFs tend to disadvantage, and lower MLFs tend to advantage, load connection points.

A2. Methodology, inputs, and assumptions

This section outlines the principles underlying the MLF calculation, the load and generation data inputs AEMO obtains and uses for the calculation, and how AEMO checks the quality of this data. It also explains how networks and interconnectors are modelled in the MLF calculation.

A2.1 Marginal loss factors calculation methodology

AEMO uses a forward-looking loss factor (FLLF) methodology (Methodology)⁷ for calculating MLFs. The Methodology uses the principle of "minimal extrapolation". The high level steps in this can be summarised as:

- Develop a load flow model of the transmission network that includes committed augmentations for the year that the MLFs will apply.
- Obtain connection point demand forecasts for the year that the MLFs will apply.
- Estimate the dispatch of committed new generating units.
- Adjust the dispatch of new and existing generating units to restore the supply-demand balance in accordance with section 5.5 of the Methodology.
- Calculate the MLFs using the resulting power flows in the transmission network.

A2.2 Load data requirements for the MLF calculation

The annual energy targets used in load forecasting for the 2024-25 MLF calculation are in Table 28 below.

Annual consumption forecasts varied materially between the 2022 and 2023 *Electricity Statement of Opportunities* (ESOO). The 2022 consumption forecasts considered *Progressive Change* as the Central scenario. The April 2023 *Update to the 2022 ESOO* forecasts shifted the Central scenario to the *Step Change* scenario, which introduced greater forecast electrification of the economy. Re-baselining the underlying business mass market and residential forecasts with revised historical data further increased the consumption outlook compared to the 2022 ESOO. The 2023 ESOO forecasts incorporated these changes and normal updates to other model inputs.

⁷ Forward Looking Transmission Loss Factors (Version 8), at https://aemo.com.au/-/media/files/electricity/nem/security_and_reliability/loss_factors_and_regional_boundaries/forward-looking-loss-factor-methodology.pdf?la=en.

Table 28 Operational consumption

Region	2023-24 forecast operational consumption (GWh) ^A	2024-25 forecast operational consumption (GWh) ^A
Queensland	52,633	50,161
New South Wales	63,886	63,748
Victoria	42,900	39,917
South Australia	11,916	11,367
Tasmania	11,392	10,763

A. Forecasting operational energy – as sent out energy was sourced from the most recent published Electricity Statement of Opportunities (2022 ESOO for 2023-24 and 2023 ESOO for 2024-25), at http://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/NEM-Electricity-Statement-of-Opportunities.

A2.2.1 Historical data accuracy and due diligence of the forecast data

AEMO regularly verifies the accuracy of historical connection point data. AEMO calculates the losses using this historical data by adding the summated generation values to the interconnector flow and subtracting the summated load values. These transmission losses are used to verify that no large errors occur in the data.

AEMO also performs due diligence checks of connection point load traces to ensure that:

- The demand forecast is consistent with the latest ESOO.
- Load profiles are reasonable, and the drivers for load profiles that have changed from the historical data are identifiable.
- The forecast for connection points is inclusive of any relevant embedded generators, where the embedded generators are not considered as part of operational demand⁸.
- Industrial and auxiliary type loads are not scaled with residential drivers.

A2.3 Generation data requirements for the MLF calculation

AEMO obtained historical real power (MW) and reactive power (megavolt-amperes-reactive [MVAr]) data from its settlements database for each trading interval (half-hour) covering every generation connection point in the NEM from 1 July 2022 to 30 June 2023.

AEMO also obtained the following data:

- Generation capacity data from AEMO's Generation Information Page published on its website on 7 February 2024 (Generation Information report).
- Historical generation availability, as well as on-line and off-line status data from AEMO's Market Management System (MMS).
- Future generation availability based on the most recent medium term projected assessment of system adequacy (MT PASA) data, as of 1 January 2024, as a trigger for AEMO to request information from participants with the potential to use an adjusted generation profile for the loss factor calculation.

⁸ Demand Terms in EMMS Data Model, at https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/system-operations/dispatch-information/policy-and-process-documentation#demandterms.

A2.3.1 New generation

The set of new generators included in the 2024-25 MLF report is taken from the Generation Information report published on 7 February 2024. Only projects listed as committed¹⁰ (Committed/Committed*/Committed¹) and with a Full Commercial Used Date (FCUD) that suggest generation occurring in the study year are included. These generators are added into the network model. For solar and wind projects, forecasted generation profiles are created. For new thermal generation and Energy Storage Systems, proponents are required to provide a forecasted generation profile.

For the new solar and wind generation projects, AEMO creates half-hourly generation profiles of generation occurring in the reference year using historical weather data from this reference year. Maximum generation of these profiles is based on the nameplate capacity reported in the Generation Information report. For projects that have a FCUD occurring within the study period, a default commissioning profile is added prior to the FCUD, after which point, an unconstrained generation profile is used.

For projects which have available historical generation in the reference year, this generation is favoured over forecasted generation. Throughout the MLF process, all relevant proponents with new generation projects were consulted regarding generation profiles.

Historical generation data from the reference year incorporates real economic curtailment in the half-hourly generation profiles. Therefore, a problem arises when creating the forecasted generation profiles where new generators do not see the effect of economic curtailment on their generation profiles. To make the forecasted generation profiles for wind and solar projects conform with real historical performance, AEMO calculates the average half-hourly economic curtailment on a per-region basis for the reference year of 2022-23.

Generators with forecasted generation profiles have their generation for a given half hour interval reduced by a constant percentage of curtailment for the region which that generator is located in. By doing this AEMO can create a more equitable baseline where existing projects with historical generation projects and new projects containing forecasted generation have comparable generation outcomes. Without this process in place, new generation would unfairly exhibit uncurtailed generation for a half-hourly interval of a given day where existing generation projects would be economically curtailed.

Figure 20 Time of day average economic curtailment for 2024-25

The following committed generation was included in the modelling, however AEMO does not publish MLFs for connections that are not yet registered:

Queensland new generation

- Clarke Creek Wind Farm
- Kidston Pumped Hydro
- Wambo Wind Farm

New South Wales and Australian Capital Territory new generation

- Crookwell 3 Wind Farm
- Kurri Kurri OCGT
- Riverina Solar Farm
- Stubbo Solar Farm
- Walla Walla Solar Farm
- Waratah Super Battery
- Wellington North Solar Farm
- Wollar Solar Farm

Victoria new generation

- Girgarre Solar Farm
- Golden Plains Wind Farm

- Hawkesdale Wind Farm
- Range Bank BESS
- Ryan Corner Wind Farm
- Wungnhu Solar Farm

South Australia new generation

None

Tasmania new generation

None

A2.3.2 Registered unit forecasts

AEMO created half-hourly profiles for registered solar and wind projects that did not operate at full capacity for the entire reference year or where historical generation data does not represent generation in the target year (due to unit specific constraints). Forecast generation profiles for registered units were modelled using the reference year 2022-23 weather data and the registered maximum capacity for the project. Historical data from the reference year was incorporated into the profile where available.

Relevant proponents for each project were consulted during the process to provide feedback or propose their own generation profile. Where applicable, adjustments based on the feedback received were made or the proponent modelled profiles were implemented where deemed appropriate.

For registered thermal and storage projects where operation was not at full capacity for the entire reference year, relevant proponents were requested to provide forecasts. Where forecasts were not provided, the data utilised has been based on historical data.

A2.3.3 Abnormal generation patterns

AEMO replaced a number of historical generation profiles with adjusted profiles as an input to the 2024-25 MLF calculation process.

In accordance with section 5.5.7 of the Methodology, AEMO used adjusted generation profiles based on verifiable information, where it was satisfied that the reference year profile was clearly unrepresentative of the expected generation for 2023-24. Historical generation patterns were adjusted to backfill historical outages and incorporate future outages identified through MT PASA data submitted as of 1 January 2024. This was performed where outages longer than 30 days have been identified, and only if deemed practicable. For example, highly variable sources of generation such as 'peakers' would not be backfilled due to the inconsistent nature of the generation.

A2.4 Intra-regional limit management

When performing MLF calculations, AEMO has identified several high impact system normal intra-regional limits that are likely to have a material impact on MLFs for the target year. To minimise deviations between the MLF

calculations and actual market outcomes, AEMO incorporated these limits by reducing generation levels to ensure the limits are not exceeded.

Constraints were incorporated into the 2024-25 MLF study using the approaches discussed below.

Thermal/transfer limit

Where a thermal or transfer limit on a line or cut set is identified as relevant, this limit was first assessed using an unconstrained study with the relevant line flows being observed. The input profiles of relevant generators are then locationally grouped and reduced on a pro-rata basis (in line with MLF minimal extrapolation theory). The following limits were applied in this way:

- North-west Victoria voltage collapse limit (simplified to reflect previously invoked V^V_NIL_ARWBBA).
- Balranald to Darlington Point voltage collapse limit (N^^N_NIL_X5_BEKG and N^^N_NIL_X5_BESH, previously N^^N_NIL_3).
- Darlington Point to Wagga Wagga voltage collapse limit (N::N_NIL_63).
- Liddell to Tamworth transfer limit (N>>NIL_88_84_S)
- Molong to Orange North transfer limit (N>NIL_94T)
- Waubra to Ballarat transfer limit (V>>NIL_WBBA_KGBE, previously V>>V_NIL_9).
- Murray to Dederang transfer limit (V>>NIL_MSDD1_MSDD2 and V>>NIL_MSDD2_MSDD1, previously V>>V_NIL_1A and V>>V_NIL_1B).
- Horsham Murra Warra Kiamal voltage collapse limit (V^^V_NIL_KGTS)

AEMO continuously monitors and assesses the impact of other system normal limits. The following lists the limits which have been considered; the transfers associated with these limits have been monitored and analysed and observations indicate appropriate management via the supply and demand balancing process (minimal extrapolation):

- Yarranlea and Middle Ridge transfer limit (Q>NIL_YLMR)
- Emerald to Comet transfer limit (Q>NIL EMCM 6056)
- Parkes to Suntop transfer limit (N>94K2_94T_NIL)
- Port Macquarie to Herron Creek transfer limit (N>>NIL_964_84_S)
- Suntop to Wellington transfer limit (N>NIL_94K_1)
- Gunnedah to Tamworth transfer limit (N>NIL_969)
- Corowa to Albury transfer limit (N>NIL_997_99A)
- Wagga North to Wagga transfer limit (N>NIL_9R6_9R5)
- Parkes 132kV/66kV transformer transfer limit (N>NIL_PKTX_LV)
- Ararat to Waubra transfer limit (V>>NIL_ARWB_KGBE, previously V>>V_NIL_18)
- Wemen 220kV/66kV transformer transfer limit (V>NIL_WETX_NIL, previously V>V_NIL_17)
- Snowtown Bungama transfer limit (S>NIL_HUWT_STBG3)

A2.5 Network representation in the marginal loss factors calculation

An actual network configuration recorded by AEMO's Energy Management System (EMS) is used to prepare the NEM interconnected power system load flow model for the MLF calculation. This recording is referred to as a 'snapshot'. AEMO reviews the snapshot and modifies it where necessary to represent all normally connected equipment. AEMO also checks switching arrangements for the Victorian Latrobe Valley's 220 kilovolt (kV) and 500 kV networks to ensure they reflect normal operating conditions.

AEMO adds relevant network augmentations that are scheduled to occur in FY 2024-25. The snapshot is thus representative of the anticipated normally operating power system in FY 2024-25.

A1.1.1 Network augmentation for 2024-25

Relevant Transmission Network Service Providers (TNSPs) advised of the following network augmentations to be completed within or prior to FY 2024-25.

Queensland network augmentations

Powerlink provided the following list of planned network augmentations in FY 2024-25 in Queensland:

- Replacement of CP.02371 H010 Bouldercombe Transformer 1 and 2
 - Replace Transformers 1 and 2 at Bouldercombe
- Establishment of CP.02883 Ross Woree Third 275kV Circuit second stage
 - Updated 275/132 kV transformer parameters
- Establishment of CP.02706 Fitzroy Ironbark 1 Mine Connection (T256 Greenland)
 - Moranbah Burton Downs Tee circuit
- Establishment of CP.02905 Aldoga Green Load connection (Larcom Creek Factory)
- Replacement of CP.02369 Blackwater Transformer 1 and 2
- Replace transformers 1 and 2 at Blackwater

New South Wales network augmentations

New South Wales NSPs provided the following list of planned network augmentations in 2024-25 in New South Wales:

- Project Energy Connect stage 1:
 - Establishment of Buronga to Red Cliffs 220 kV double circuit line

Victoria network augmentations

AEMO's Victorian Planning Group provided the following list of planned network augmentations in 2024-25 in Victoria:

- Replacement of East Rowville (ERTS) existing transformer B3
- Replacement of Springvale (SVTS) existing B1, B2 and B3 transformers

- Replacement of Fishermans Bend (FBTS) existing B2 transformer
- East Rowville (ERTS) Redevelopment Stage 2
 - Replacement of B1 and B4 transformers
- Project Energy Connect stage 1:
 - Establishment of new Buronga to Red Cliffs 220 kV double circuit line

South Australia network augmentations

ElectraNet provided the following list of planned network augmentations in FY 2024-25 in South Australia:

- Replacement of Leigh Creek South transformer
- Project Energy Connect stage 1- Establishment of followings:
 - A new Robertstown to Bundey 275 kV double circuit line.
 - A new Bundey to Buronga 330 kV double circuit line
 - A new 330/275 kV substation and 3x400 MVA 275/330 kV transformers at Bundey.
 - A new 330/220 kV substation, 1x200 MVA 330/220 kV transformer and 1x200 MVA 330 kV phase shifting transformer at Buronga.

Tasmania network augmentations

TasNetworks provided the following list of planned network augmentations in FY 2024-25 in Tasmania:

None

A2.5.1 Treatment of Basslink interconnector

Basslink consists of a controllable network element that transfers power between Tasmania and Victoria.

In accordance with sections 5.3.1 and 5.3.2 of the Methodology, AEMO calculated the Basslink connection point MLFs using historical data, adjusted to reflect any change in forecast generation in Tasmania.

A2.5.2 Treatment of Terranora interconnector

The Terranora interconnector is a regulated interconnector.

The boundary between Queensland and New South Wales between Terranora and Mudgeeraba is north of Directlink. The Terranora interconnector is in series with Directlink and, in the MLF calculation, AEMO manages the Terranora interconnector limit by varying the Directlink limit when necessary.

For the 2024-25 MLFs, the relationship between Terranora and QNI has been derived from historical system normal (excludes data where limits applied that were related to network outages) observations from 2022-23.

As Directlink resides entirely within New South Wales, considerations were made for load between Directlink and Terranora to ensure that the intended relationship between QNI and Terranora was achieved.

A2.5.3 Treatment of the Murraylink interconnector

The Murraylink interconnector is a regulated interconnector.

In accordance with section 5.3 of the Methodology, AEMO treats the Murraylink interconnector as a controllable network element in parallel with the regulated Heywood interconnector.

For the 2024-25 MLFs, the relationship between Murraylink and Heywood has been derived from historical system normal (excludes data where limits applied that were related to network outages) observations from 2022-23.

A2.5.4 Treatment of Yallourn unit 1

Yallourn Power Station Unit 1 can be connected to either the 220 kV or 500 kV network in Victoria.

AEMO modelled Yallourn Unit 1 at the two connection points (one at 220 kV and the other one at 500 kV) and calculated loss factors for each connection point. AEMO then calculated a single volume-weighted loss factor for Yallourn Unit 1 based on the individual loss factors at 220 kV and at 500 kV, and the output of the unit.

A2.6 Interconnector capacity

In accordance with section 5.5.4 of the Methodology, AEMO estimated nominal interconnector limits for summer peak, summer off-peak, winter peak, and winter off-peak periods. These values are in the table below. AEMO also sought feedback from the relevant TNSPs as to whether there were any additional factors that might influence these limits.

Table 29 Inter-regional limits

From region	To region	Summer day (MW) ^A	Summer night (MW) ^A	Winter day (MW) ^A	Winter night (MW) ^A
Queensland	NSW ^B	1,350	1,350	1,350	1,350
NSW	Queensland ^B	800	800	800	800
NSW	Victoria	1,700	1,700	1,700	1,700
Victoria	NSW	1,670	1,670	1,670	1,670
Victoria ^c	South Australia ^c	700	700	700	700
South Australia ^c	Victoria ^c	750	750	750	750
Victoria (Murraylink)	South Australia (Murraylink)	220	220	220	220
South Australia (Murraylink)	Victoria (Murraylink)	188 minus Northwest Bend & Berri loads	198 minus Northwest Bend & Berri loads	215 minus Northwest Bend & Berri loads	215 minus Northwest Bend & Berri loads
Queensland (Terranora)	NSW (Terranora)	224	224	224	224
NSW (Terranora)	Queensland (Terranora)	107	107	107	107
Tasmania (Basslink)	Victoria (Basslink) ^E	594	594	594	594
Victoria (Basslink)	Tasmania (Basslink) ^E	478	478	478	478

- A. The peak interconnector capability does not necessarily correspond to the network capability at the time of the maximum regional demand; it refers to average capability during daytime, which corresponds to 6.00 am to 6.00 pm (AEST) in MLF studies.
- B. The "QNI minor" upgrade was modelled with an additional headroom of 100MW in the northward day flow.
- C. Stage 1 of PEC has been implemented as per the micro-slice option, which has resulted in an increase of 150MW to VIC-SA limits in both directions for the 2024-25 FY.
- D. Limit referring to the receiving end.

A2.7 Calculation of MLFs

AEMO uses the TPRICE⁹ software to calculate MLFs using the following method:

- Convert the half-hourly forecast load and historical generation data, generating unit capacity and availability data together with interconnector data into a format suitable for input to TPRICE.
- Adjust the load flow case to ensure a reasonable voltage profile in each region at times of high demand.
- Convert the load flow case into a format suitable for use in TPRICE.
- Feed into TPRICE, one trading interval at a time, the half-hourly generation and load data for each connection point, generating unit capacity and availability data, with interconnector data. TPRICE allocates the load and generation values to the appropriate connection points in the load flow case.
- TPRICE iteratively dispatches generation to meet forecast demand and solves each half-hourly load flow case subject to the rules in section 5.5.2 of the Methodology, and calculates the loss factors appropriate to the load flow conditions.
- Refer the loss factors at each connection point in each region are referred to the RRN.
- Average the loss factors for each trading interval and for each connection point using volume weighting.

In accordance with section 5.6.1 of the Methodology, AEMO calculates dual MLF values at connection points where one MLF does not satisfactorily represent active power generation and consumption.

A2.7.1 MLF calculation quality control

As with previous years, AEMO has engaged consultants to review the quality and accuracy of the MLF calculation. The consultants will perform the following work:

- An independent verification of AEMO's data inputs to the MLF calculation.
- A verification study using AEMO's input data to independently validate AEMO's calculation results. AEMO will
 use the verification study to ensure that AEMO's MLF calculation methods and results are accurate.

⁹ TPRICE is a transmission pricing software package. It is capable of running a large number of consecutive load flow cases quickly. The program outputs loss factors for each trading interval as well as averaged over a financial year using volume weighting.

A3. Impact of technology on MLF outcomes

As discussed in Appendix A2, MLFs are calculated by simulating power flows on the network for every half-hour, in the next financial year, using forecast supply and demand values. The calculated raw loss factors for each half-hour are then weighted by the volume of energy at the TNI to calculate the MLF for that TNI.

Calculated raw MLFs reflect the supply and demand at each half-hour and, as with supply and demand outcomes, can vary drastically. In remote locations with material levels of grid-connected solar capacity, an increasingly stronger diurnal pattern in half-hourly MLFs is observed due to increased supply and low demand (driven by distributed photovoltaics [PV]) during daylight hours. The combination of increased generation and reduced local demand results in the energy produced needing to travel longer distances to supply load resulting in increased losses over the transmission network and lower MLF outcomes for these generators.

While this diurnal volatility in underlying half-hourly MLFs does result in poor outcomes for grid-connected solar, it can present potential opportunities for storage technologies which may be able to achieve a delta between load and generation MLFs that will complement arbitrage behaviour.

As a hypothetical example, Figure 21 shows the time-of-day average raw MLFs and generation (% of capacity) for several technologies, all connected to the same location within the shared transmission network.

Table 30 shows the MLF outcomes for the different technologies shown in Figure 21, highlighting that, despite all having the same underlying raw half-hourly MLFs, the outcomes vary drastically.

- Solar farm the solar farm is generating into the middle of the day, when the underlying half-hourly MLFs are
 low, which reflects generation at this location needing to travel long distances to serve load during these times.
 The result is the second lowest MLF outcome; given the lowest MLF outcome is the battery load, the solar farm
 MLF outcome is the least favourable.
- Wind farm the wind farm weighting tends toward the evening peak, when the underlying half-hourly MLFs are high, which reflects generation at this location not needing to travel long distances to serve load during these times. The result is the highest MLF outcome of all technologies, which is favourable.
- Battery (generation) the battery is generating into both morning and evening peaks, when the underlying half-hourly MLFs are above average, which reflects generation at this location not needing to travel long distances to serve load during these times. The result is the second highest MLF outcome of all technologies, which is favourable.
- Battery (load) the battery is loading into the middle of the day, when the underlying half-hourly MLFs are low, which reflects generation at this location needing to travel long distances to serve load during these times. As the battery is increasing local load, this decreases the volume of energy that is required to travel long distances to serve load. The result is the lowest outcome of all technologies, which is favourable.

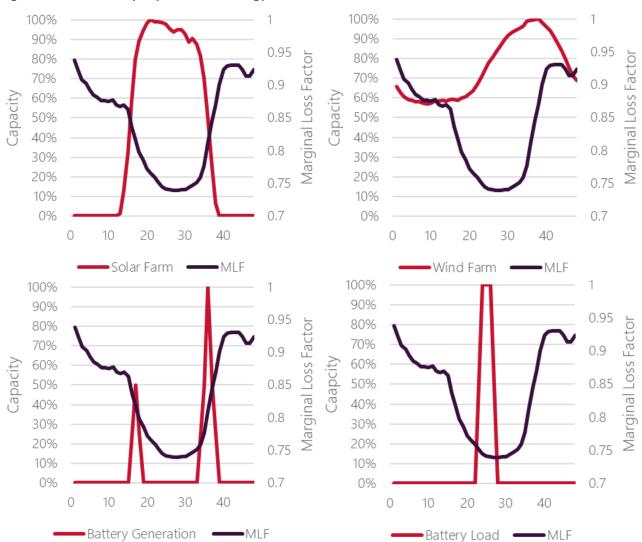


Figure 21 Time-of-day impact of technology on MLF outcomes

Table 30 Impact of technology on MLF outcomes

Technology	Indicative MLF
Solar farm	0.7657
Wind farm	0.8364
Battery (generation)	0.8130
Battery (load)	0.7431

A4. Impact of congestion on MLF outcomes

In recent years, the materiality of system normal congestion (congestion not associated with network outages) has increased year on year. Congestion in the NEM is managed via constraints, constraints are effectively the tools which allow for representation of physical limits into the NEM dispatch engine (NEMDE) with the intent of ensuring the security and reliability of the power system is maintained at the lowest cost solution.

While there are a large variety of reasons that constraints exist (not all physical – negative residue management constraints being an example of a constraint type driven by financial considerations), constraints that curtail generation are the most pertinent to MLFs.

Each relevant limit and, in turn constraint limits network flows either directly (intended to limit flow on lines pre or post contingency) or indirectly (by limiting output of relevant generation) limits flow. By limiting flow, this limits losses and can effectively be considered as creating a collar on MLF outcomes in that it effectively sets both a floor and ceiling to MLF outcomes. Typically, it will be the floor component of this collar that is of relevance to MLF outcomes by limiting how low MLF outcomes can go.

Where limit advice is introduced or revised in a manner that is more restrictive and increases curtailment, MLF outcomes will either increase as a result of decreased flow and/or variations to weighting or reductions will be limited.

Where limit advice is revised in a manner that is less restrictive and decreases curtailment, MLF outcomes will decrease as a result of increased flow and/or variations to weighting.

Glossary

Term	Definition	
ACT	Australian Capital Territory	
AEMO	Australian Energy Market Operator	
AER	Australian Energy Regulator	
BESS	Battery Energy Storage System	
DC	Direct current	
ESOO	Electricity Statement Of Opportunities	
FLLF	Forward Looking Loss Factor	
FY	Financial Year	
GWh	Gigawatt-hour	
km	Kilometre	
kV	Kilovolt	
LNG	Liquefied natural gas	
MLF	Marginal Loss Factor (intra-regional loss factor)	
Methodology	Forward Looking Loss Factor Methodology	
MVAr	Megavolt-ampere-reactive	
MW	Megawatt	
NEM	National Electricity Market	
NEMDE	National Electricity Market Dispatch Engine	
NSP	Network service provider	
PS	Power station	
PV	Photovoltaic	
QNI	Queensland to New South Wales Interconnector	
RRN	Regional Reference Node	
Rules	National Electricity Rules	
TNI	Transmission Node Identity	
TNSP	Transmission network service provider	
VTN	Virtual Transmission Node	