

National Electricity Market
Management Company Limited
ABN 94 072 010 327

Guidelines for
Development of A
Standard for Energy
Transactions in XML
(aseXML)
Version No: 3.0

28 September, 2004 Version No: 3.0 Page 1

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

1. INTRODUCTION...5
1.1 BACKGROUND ...5
1.2 APPROACHES TO STANDARD DEVELOPMENT ...5
1.3 DOCUMENT PURPOSE..5
1.4 TARGET AUDIENCE...5
1.5 REFERENCE DOCUMENTATION ..6
1.6 FORMATTING CONVENTIONS..6
1.7 ASEXML CONCEPTUAL MODEL AND TERMINOLOGY ..6
1.8 DOCUMENT STRUCTURE ...9
1.9 REVISION HISTORY...10

2. GENERAL...15
2.1 DTDS VS SCHEMAS ...15
2.2 USE OF SCHEMA VALIDATING PARSERS...15
2.3 ELEMENTS VS ATTRIBUTES ..15
2.4 USE OF ENUMERATIONS..16
2.5 CODES VS DESCRIPTIONS ..17
2.6 USE OF LINE TERMINATORS ...18
2.7 THE SPIRIT OF ASEXML...18
2.8 CONTAINER ELEMENTS FOR REPEATED ELEMENTS19
2.9 MAINTAINING ELEMENT ORDER ...19

3. VERSION CONTROL ...20
3.1 XML AND VERSIONING ...20

3.1.1 Options For Adding Version Information To XML ...20
3.1.2 Namespaces...21
3.1.3 Namespace Granularity ..21
3.1.4 XML Schemas ..22

3.2 ASEXML AND VERSIONING..23
3.2.1 Guiding Principles...23
3.2.2 Role Of Versioning...24
3.2.3 Adding Version Information ..25
3.2.4 Namespaces...26
3.2.5 Release Identifiers ..26
3.2.6 Schemas...28
3.2.7 Version Attributes ...28
3.2.8 Selecting Elements To Version...30
3.2.9 “Backwards compatible” changes...32

3.3 USING DEVELOPMENT IDENTIFIERS ..32
3.3.1 Scenario..32
3.3.2 Sequence of Events..32

3.4 ARCHITECTURE IMPLICATIONS OF ASEXML RELEASE MIGRATIONS.............36
3.4.1 Accepting aseXML Messages ..36
3.4.2 Producing aseXML Messages ..37
3.4.3 Minimising Code Branches ...37
3.4.4 Release Example..38

3.5 ASEXML VERSIONING STEP BY STEP..39
3.5.1 The Initial Message...40
3.5.2 The Content Model Changes For An Isolated Element41
3.5.3 The Content Model Changes For A Shared Element42

28 September, 2004 Version No: 3.0 Page 2

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3.5.4 The Content Model Changes For A Shared Element (2)..................................43
3.5.5 The Structure Changes For A Shared Concrete Type......................................44
3.5.6 The Optionality Of An Element is Changed ..45
3.5.7 Version Attribute Added..46

4. NAMESPACES...47
4.1 ASEXML NAMESPACE FORMAT..47
4.2 DEFAULT NAMESPACES...47
4.3 NAMESPACE PREFIXES..48

5. SCHEMA ORGANISATION..49
5.1 SCHEMALOCATION URLS ...49
5.2 TRANSACTION FILES ..50
5.3 SCHEMA INCLUSION ...51
5.4 COMMON SCHEMAS ...51
5.5 ELEMENTS/TYPES...52
5.6 TRANSACTION ELEMENTS...52
5.7 ATTRIBUTES...53

6. SCHEMA FEATURES ..54
6.1 XML DECLARATION ...54
6.2 ANONYMOUS VS NAMED TYPES AND DATA DICTIONARIES54
6.3 ANNOTATIONS ...54
6.4 SIMPLE TYPES...55
6.5 HANDLING FUEL SPECIFIC VARIATIONS..55
6.6 ASEXML ATTRIBUTES ..55

6.6.1 Default Values ..56
6.6.2 ID And IDREF ...56

6.7 ELEMENT AND ATTRIBUTE QUALIFICATION..56
7. INSTANCE DOCUMENTS..57

7.1 XML DECLARATION ...57
7.2 DEFAULT NAMESPACES...57
7.3 SCHEMALOCATION ATTRIBUTE ..57
7.4 DECLARING NAMESPACES FROM THE XML STANDARDS...............................57

8. TRANSPORT, ENVELOPE OR TRANSACTION...58
8.1 TRANSPORT...58
8.2 ENVELOPE..60
8.3 TRANSACTION ...60

9. ENVELOPE...61
9.1 INTRODUCTION ...61
9.2 <HEADER> SUB-ELEMENT ...61

9.2.1 <From>, <To> (Mandatory) ..62
9.2.2 <MessageID> (Mandatory) ...62
9.2.3 <MessageDate> (Mandatory) ...62
9.2.4 <TransactionGroup> (Mandatory) ..62
9.2.5 <Priority> (Optional)..62
9.2.6 <SecurityContext> (Optional) ...63
9.2.7 <Market> (Optional)..63

9.3 <TRANSACTIONS> SUB-ELEMENT...63
9.3.1 transactionID (Mandatory) ..63
9.3.2 transactionDate (Mandatory) ..64
9.3.3 initiatingTransactionID (Optional) ...64

28 September, 2004 Version No: 3.0 Page 3

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

9.4 FUTURE ENVELOPE MODIFICATIONS ..64
9.5 A SAMPLE ASEXML MESSAGE..65

10. ACKNOWLEDGEMENT MODEL ...66
10.1 INTRODUCTION..66
10.2 TRANSACTION EXCHANGES VS TRANSACTION ACKNOWLEDGEMENTS..66
10.3 MESSAGE ACKNOWLEDGEMENT ..66

10.3.1 initatingMessageID (Mandatory)...67
10.3.2 receiptID (Optional)...67
10.3.3 receiptDate (Mandatory) ...67
10.3.4 status (Mandatory)..67
10.3.5 duplicate (Optional)...68

10.4 TRANSACTION ACKNOWLEDGEMENT ..68
10.4.1 initatingTransactionID (Mandatory)...68
10.4.2 receiptID (Optional)...68
10.4.3 receiptDate (Mandatory) ...69
10.4.4 status (Mandatory)..69
10.4.5 duplicate (Optional)...69
10.4.6 acceptedCount (Optional)...70

10.5 EXCHANGING ACKNOWLEDGEMENTS ...70
10.6 HANDLING DUPLICATES ...70
10.7 A SAMPLE ASEXML TRANSACTION EXCHANGE ...72

11. ERROR REPORTING AND THE <EVENT> ELEMENT..73
11.1 CLASS ATTRIBUTE (OPTIONAL) ..73
11.2 SEVERITY ATTRIBUTE (OPTIONAL) ...74
11.3 <CODE> SUB-ELEMENT (MANDATORY) ...74
11.4 <KEYINFO> SUB-ELEMENT (OPTIONAL) ..75
11.5 <CONTEXT> SUB-ELEMENT (OPTIONAL) ...75
11.6 <EXPLANATION> SUB-ELEMENT (OPTIONAL)...76
11.7 <SUPPORTEDVERSIONS> SUB-ELEMENT (OPTIONAL) ...76
11.8 RESERVED EVENT CODES..77

12. GENERIC TRANSACTION EXCHANGES ...80
12.1 TABLE REPLICATION ...80
12.2 REPORTS..82

13. SUPPORT FOR CSV FORMAT DATA...83
13.1 FORMAT CONSTRAINTS ...83
13.2 LINE TERMINATOR...83

14. ACCESSING ASEXML SCHEMAS AND INSTANCE DOCUMENT EXAMPLES......84

15. MESSAGE SERVICES ...84
15.1 ASEXML FTP HOKEY-POKEY PROTOCOL..84
15.2 USING ASEXML WITH EBXML MESSAGING SERVICE ..84
15.3 ASEXML BINDING WITH SMTP ...84

28 September, 2004 Version No: 3.0 Page 4

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

1. INTRODUCTION

1.1 BACKGROUND

The combined Gas and Electricity IT Architecture Working Group of Australia
has adopted a number of recommendations in the area of business-to-
business electronic data interchange (see document references in section
1.5). The thrust of this work is an acceptance of XML to describe business
transactions and the Internet to exchange them.

The working group has commissioned the development of this document in
order to further the standardisation of the transactions required within the
Australian energy market.

1.2 APPROACHES TO STANDARD DEVELOPMENT

There are various approaches that may be adopted in the development of a
standard.

Centralised approaches typically involve the formulation of a representative
committee that drafts the specification, followed by its implementation by the
participants. The aim is for up-front consensus to avoid future interoperability
problems, but the process often suffers from bureaucratic delays.

De-centralised approaches allow individuals to develop working prototypes
and have these ratified by an authorising committee. A high degree of
parallelism may be achieved, but broader acceptance is contingent on the
standard meeting the requirements of all involved.

Given the tight timeframes established for full retail contestability, a de-
centralised model to standards development has been adopted. The aim is to
harness the collective intellectual property of the industry with individuals
focussing on those areas where they perceive the most benefit.

1.3 DOCUMENT PURPOSE

The purpose of this document is thus to establish sufficient infrastructure to
allow the independent development of portions of the specification and their
combination in an efficient manner. Given the process used, this document will
of necessity evolve over time and should be considered a “work in progress”.

1.4 TARGET AUDIENCE

This document is designed for technical and software development staff
responsible for systems implementing the aseXML standard.

It is assumed that readers of this document are familiar with the standards
below.

1. Extensible Markup Language (XML) 1.0 (www.w3.org/TR/REC-xml)

28 September, 2004 Version No: 3.0 Page 5

http://www.w3.org/TR/REC-xml

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

2. Namespaces in XML (www.w3.org/TR/REC-xml-names)

3. XML Schema Part 1: Structures (www.w3.org/TR/xmlschema-1)

4. XML Schema Part 2: Datatypes (www.w3.org/TR/xmlschema-2)

5. XSL Transformations (XSLT) Version 1.0 (www.w3.org/TR/xslt)

1.5 REFERENCE DOCUMENTATION

The following documents may be of use for background information.

1. Combined Gas & Electricity IT Working Group White Papers
(http://www.asexml.com/)

2. XML Schemas: Best Practices
(http://www.xfront.com/BestPracticesHomepage.html)

3. ISO/IEC 11578:1996 – “Information technology – Open Systems
Interconnection – Remote Procedure Call”

1.6 FORMATTING CONVENTIONS

This paragraph demonstrates the appearance within this document of
any text defining a requirement for conformance to aseXML.

Any text representing the literal value used for elements or attributes will be
shown in fixed pitch font, e.g. <TransactionGroup>.

1.7 aseXML CONCEPTUAL MODEL AND TERMINOLOGY

Words such as “transaction”, “message”, “acknowledgement” and “gateway”
are commonly used in a wide variety of contexts within the Information
Technology Industry.

It is thus important to understand their use within aseXML. Figure 1 below
presents the conceptual model used by aseXML and its use of such terms.
The terms appearing on the diagram are defined in subsequent paragraphs.
They will be further expanded in subsequent chapters and sections of this
document.

A transaction is a one-way exchange of information between applications
within communicating end systems.

A transaction exchange is the exchange of one or more transactions
between applications. It consists of a request transaction, followed by zero
or more response transactions. Typically transaction exchanges follow a
request/single response model.

For each transaction of a transaction exchange, the receiving application
responds with a transaction acknowledgement. A transaction
acknowledgement allows tracking of the transaction’s progress and flags the
receiver’s commitment to process it. It may also be used to carry error
information with regards to the corresponding transaction.

28 September, 2004 Version No: 3.0 Page 6

http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xslt
http://www.asexml.com/
http://www.xfront.com/BestPracticesHomepage.html

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Message
Message Acknowledgement

Transaction
Transaction Exchange

Transaction Acknowledgement

aseXML
Gateway

APP

aseXML
Gateway

APP

Transport

Transaction Group Transaction Group

SYSTEM A SYSTEM B

Figure 1 - aseXML Conceptual Model

In order to prevent circular acknowledgements, there is no acknowledgement
of transaction acknowledgements.

A transaction group identifies a set of related transaction exchanges. Each
transaction exchange is associated with one or more transaction group.

Transaction groups are intended to assist an aseXML Gateway (see below) in
prioritising and routing transactions to the appropriate application within an
end system. Thus from an aseXML perspective, a transaction group identifies
an “application” within an end system.

An aseXML message provides a standard envelope for the carriage of
transactions or acknowledgements. One message can carry multiple
transactions or acknowledgements. Within a given message, all transactions
or transaction acknowledgements must relate to the same transaction group.

For each message, the receiving gateway generates a message
acknowledgement. A message acknowledgement allows tracking of the
message’s progress and flags the receiver’s commitment to process it. It may

28 September, 2004 Version No: 3.0 Page 7

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

also be used to carry error information with regards to the corresponding
message.

In order to prevent circular acknowledgements, any message containing a
message acknowledgement is not itself acknowledged.

An aseXML Gateway is responsible for validating aseXML messages and
routing them to external systems, or the contained transactions to the
appropriate internal application. In order to exchange messages with an
external system, the gateway uses the facilities offered by one or more
transport layers.

A transport layer is assumed to provide reliable delivery of payloads. aseXML
acknowledgements should thus be considered in the context of message or
transaction auditing and tracking rather than as part of a reliable delivery
mechanism.

An example of the use of the above terminology is given below, with this
example used as the basis for other examples in this document.

Application – NMI Data Access

Transaction Group - NMID

Transaction Exchanges – NMI Discovery, NMI Standing Data

Transactions –

NMI Discovery : NMI Discovery Request, NMI Discovery Response

NMI Standing Data : NMI Standing Data Request, NMI Standing Data
Response

28 September, 2004 Version No: 3.0 Page 8

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

1.8 DOCUMENT STRUCTURE

Chapter Area Covered

2 General requirements needed prior to a detailed discussion of XML
Schema organisation

3 Version control within aseXML. It is necessary to define the
versioning mechanism to be used as it impacts on naming
standards

4 Namespace use within aseXML

5 Source file management and element naming for aseXML
Schemas

6 Use of XML Schema features within aseXML

7 Format requirements for instances of aseXML documents

8 Distinction between XML defining transactions and XML needed to
carry information about the process and its transactions

9 XML Envelope to be used within aseXML

10 Transaction Exchange Model for aseXML, including
acknowledgement mechanisms

11 Error and Event Handling

12 Generic Transaction Exchanges

13 Support for CSV format data

14 How to obtain schemas and examples for aseXML

15 References to documentation of messaging services to exchange
aseXML documents

28 September, 2004 Version No: 3.0 Page 9

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

1.9 REVISION HISTORY

Version Date Who Comments

0.1 25/09/2000 Michael Leditschke Initial draft

0.2 02/10/2000 Michael Leditschke Rework with single namespace

0.3 04/10/2000 Michael Leditschke Simplify version identifiers

Add special text format for
requirements

0.4

0.5

09/10/2000

31/10/2000

Michael Leditschke

Michael Leditschke

Add additional element naming
guidelines

Final review before release to IT WG

Note: Diagrams are still to be
completed.

0.6 09/10/2000 Michael Leditschke Add diagrams

Revised text of chapter 8

0.7 19/12/2000

Michael Leditschke Schemas now based on 24th October
2000 candidate recommendation

Clarify the use of the “ref” construct for
global elements

Remove restriction on the encoding
scheme used. All implementations
must support UTF-8 to comply with the
Extensible Markup Language (XML)
1.0 specification, and ASCII is a subset
of UTF-8.

Sample schemas and instance
documents no longer contained in this
document. Reference to the
appropriate URLs is provided

Added caveat to codes vs. descriptions
allowing no description where
code/description mappings known to
businesses

Added chapter 10 on the aseXML
Acknowledgement Model

28 September, 2004 Version No: 3.0 Page 10

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Version Date Who Comments

06/03/2001 Updated chapter 9 on the aseXML
Envelope to reflect envelope used for
MSATS – remove use of the term
“Interim” in the header

Added section 1.7 on transaction
terminology in Introduction

Expanded section 5.4 on common
schemas

Added section 6.2 on use of
anonymous types

Changed document title to avoid
Standards Australia trademarks

Expanded section 6.3 on use of
annotations in line with desire to
automatically generate data
dictionaries from the schemas.
Removed chapter on documentation.

Added chapter 11 to more fully cover
error reporting

0.8 16/03/2001 Michael Leditschke Allow message and transaction level
acknowledgements in a single
message

Namespace usage within schemas
now consistent with reference 2.

0.9 20/03/2001 Michael Leditschke Rename <Location> element of
<Event> to <KeyInfo> and change
description

Add text indicating what severity levels
should accompany acknowledgements

1.0 23/03/2001 Michael Leditschke Reformat as FINAL

1.1 30/05/2001 Michael Leditschke Minor editorial changes

Acknowledgements now use the term
receipt rather than request

Chapter 13 now refers to the URL that
provides the entry point to information
with regard to aseXML

Add recommendation with regard to the
use of UUIDs for messageIDs,

28 September, 2004 Version No: 3.0 Page 11

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Version Date Who Comments

transactionIDs and receiptIDs

Add reference to ISO 11578.

receiptID attribute on
acknowledgements is optional in case
where message or transaction is
rejected

Add comment with regard to generation
of a new messageID or
transactionID in the case of a
rejection

Add <Market> element to the
message header to allow identification
of the energy market in which the
transactions should be considered

<Event> attributes are now optional
with default values.

Rearrange standard event codes such
that they are unique. Add a few
additional standard codes.

Change <Event> class attribute
value of “Data” to “Application” to more
closely match its intended purpose

Expand section on aseXML
terminology and include information on
the aseXML conceptual model.
Remove the term “business process”
and replace with “application” or
“transaction group” to be consistent
with the model.

Add section 10.2 to clarify the role of
transaction acknowledgements in
transaction exchanges.

Added additional text to section 10.5 to
further clarify the issues associated
with exchanging acknowledgments.

Schemas should now use the
02/05/2001 XML Schema
recommendation.

The requirement for all attributes to be
mandatory has been removed.

28 September, 2004 Version No: 3.0 Page 12

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Version Date Who Comments

Added duplicate attribute definition
and description to acknowledgements

Added acceptedCount attribute
definition and description to transaction
acknowledgement

1.2 27/06/01 Michael Leditschke Introduced the concept of generic
transaction exchanges that can appear
within multiple TransactionGroups,
e.g. reports and table replication

Relaxed the restriction in section 1.7
that a transaction exchange may only
appear in one TransactionGroup to
allow for generic transactions

Added chapter 12 on generic
transaction exchanges

Added additional standard event codes
in section 11.8

Completed hanging sentence in section
10.2 (thanks James)

1.3 22/08/01 Michael Leditschke Added a comment clarifying the need
for uniqueness with MessageIDs and
transactionIDs (sections 9.2.2 and
9.3.1)

An event severity of “Information”
should be used, in the absence of any
other circumstances, with a code value
of 0 (section 11.2)

Added section 13.2 to document the
line terminator to be used with CSV
data

Added section 2.7 on the desire for a
single transaction set per business
process

2.0 13/05/02 Michael Leditschke Minor editorial corrections

Correct example in section 10.7

Incorporate change proposals

1. Schema file naming

2. Event code ranges

28 September, 2004 Version No: 3.0 Page 13

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Version Date Who Comments

3. “The Spirit of aseXML”

4. Event code 999

5. Repeating elements

6. Maintaining element order

NB. An additional sentence has
been added to the text of
proposal 6 to include reference
to the term “parallel design”,
which is sometimes used for
this design pattern.

7. Enumerations

8. Enhanced versioning

2.1 14/10/02 Bibhakar Saran Incorporated change proposals:

2.1. Version attribute for derived
types

2.2. Add aseXML binding details
for ebXML messaging and other
relevant protocols

2.3. Add error code 206

3.0 6/10/03 Darren Field Added information on patch releases
(section 3.2.5).

Clarified handling of duplicate
messages and transactions (section
10).

28 September, 2004 Version No: 3.0 Page 14

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

2. GENERAL

2.1 DTDs VS SCHEMAS

The data dictionary and transactions will be expressed in the language
of XML schemas rather than DTDs.

This follows the trend towards the use of schemas in much of the work
currently being undertaken on the Internet.

Schemas will use the 2nd May 2001 XML Schema recommendation until
such time as any new version of the specification reaches
recommendation status.

2.2 USE OF SCHEMA VALIDATING PARSERS

A schema validating parser will process incoming XML documents in
order to ensure full compliance to the aseXML standard.

This parsing should occur as early as possible, preferably prior to application
processing, in order to ensure the timeliest rejection of invalid transactions.

Use of such a parser may also remove some of the validation burden from the
receiving application and assist in ensuring consistent industry wide validation.

2.3 ELEMENTS VS ATTRIBUTES

There have been many debates within the XML community with regard to the
representation of data items in elements as opposed to attributes. Many XML
standards such as XSL provide equivalent functionality for both and often the
choice is a matter of philosophical preference.

The main differences between attributes and elements in this context are that

• Attributes can only be of simple types, whereas elements may be of
complex types.

Complex data items such as addresses are thus not appropriate
candidates for attributes.

• Versioning of attributes is difficult to achieve

By its nature, it is difficult to attach versioning to an attribute, whereas an
element can easily carry a version attribute. In addition, mechanisms such
as the <choice> tag in schemas are only available for elements and not
for attributes.

28 September, 2004 Version No: 3.0 Page 15

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Approaches to deciding what information belongs where cover a broad range
including the following:

• Use elements for content and attributes for metadata about the content.

An example might be to use an element for a bid structure and an attribute
of this element for the bid date.

• Use attributes where there is no likelihood of further data refinement
otherwise use elements.

• Where there is no other deciding factor, use an attribute rather than an
element because of its more concise syntax.

Whilst it is recognised that no particular approach is more “correct” than any
other, one approach needs to be selected to provide consistency across the
transactions within aseXML. The rules below will thus be used to determine
when to use elements and attributes.

• Use elements for content and attributes for metadata about the
content.

• If there is any chance of further data refinement, use an element.

• If there is the possibility that multiple versions may need to co-exist,
use an element.

• If in doubt, use an element.

2.4 USE OF ENUMERATIONS

One feature of XML Schemas, called an enumeration, limits the contents of an
element or attribute to a finite set of values. Use of enumerations in aseXML
schemas is desirable to provide global documentation of this set of values in
an enforceable manner.

It is recognised, however, that where the possible set of values is changing
frequently, enumerations may cause problems in areas such as versioning. In
addition, determining the valid set of values may more readily be handled in
application code, particularly where processing logic depends on the value.
The disadvantage of application-based validation is that it must be
implemented by all participants rather than once in the schema.

Schema designers are thus encouraged to use enumerations provided the
values are stable. As a general rule of thumb, if the set of valid values
changes as a result of an administrative function, an enumeration should NOT
be used, for example registration of a new participant. If the set of valid values
changes as a result of industry-wide consultation, however, enumerations may
be considered, for example addition of new tranches.

Where there are only two possible values for an enumeration, the in-built
boolean type, NOT an enumeration, should be used. In this case, the
element name should carry the meaning of the “true” value. An example

28 September, 2004 Version No: 3.0 Page 16

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

is shown below of a row status data field that can have the content
values of “Active” or “Inactive”.

USE

<RowActive>true</RowActive>

NOT

<RowStatus>Active</RowStatus>

Descriptive terms rather than abbreviations should, in general, be used
for enumeration values. The motivation for this is to achieve readability
of the resulting XML, recognising that mapping of the enumeration
values to internal values is likely by both the sender and receiver. Note
that this requirement does not rule out the use of industry accepted code
sets, such as those used to specify Australian addresses.

An enumeration should only have one value per logical meaning. For
instance, if an enumeration had a value of “Energised”, it would not be
acceptable to also include a value of “En” or “E” to represent
abbreviated forms of “Energised”. Similarly, a value of “Powered”, if it
implied the same logical meaning as “Energised”, would not be
acceptable.

2.5 CODES VS DESCRIPTIONS

Where codes or alphanumeric identifiers have an equivalent textual value, it is
desirable that both the mnemonic and its equivalent description be carried by
a transaction.

This will enhance human readability of the transaction as well as information
display and validation. This approach is particularly important where codes are
specific to a particular participant.

Where mechanisms are in place for the exchange between businesses of the
code/description mapping information, use of descriptions within transactions
should be considered optional.

When included, a description will be carried either as a separate sub-
element or as an attribute of the element. By preference, the sub-element
<Description> or the attribute “description” should be used.

An example is given below.

28 September, 2004 Version No: 3.0 Page 17

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

<DistributionLossFactor>

<Code>QLD23</Code>

<Description>Brisbane Metro</Description>

</DistributionLossFactor>

or

<DistributionLossFactor code=”QLD23”

description=”Brisbane Metro”/>

In line with section 2.4, enumeration of the possible values for codes and
equivalent descriptions should be included in the schema where
appropriate.

2.6 USE OF LINE TERMINATORS

Schemas and instance documents should incorporate line terminators to
assist in human readability, subject to issues related to data volume.

The start and end tags of elements containing sub-elements should stand
alone on a line, whilst the tags of elements not containing sub-elements may
reside on a single line.

2.7 THE SPIRIT OF aseXML

This document focuses largely on the common infrastructure needed to allow
the exchange of transactions (see section 1.7) However, it is equally important
to realise that in developing aseXML, there is a strong desire that there should
only be one set of transactions used for a given business process. The
transactions thus need to be designed, or need to be modified over time, to
accommodate variations between markets and fuel types.

The driver for commonality of transactions across different fuel types and
markets is to minimise the requirement for different systems and business
processes to be built both at the central hub and at the participant end. This
desire to minimise cost in handling transactions between businesses is
fundamental to the development of the standard.

Any party wishing to introduce new transactions to aseXML needs to ensure
that there is not already an existing set of transactions that broadly covers the
business process being addressed.

Conversely, care should be taken in using existing transactions to enable
similar but subtly different business processes that sufficient documentation
exists of these differences.

This desire, not only for a single transaction infrastructure, but a single set of
transactions, has come to be referred to as the “spirit” of aseXML.

28 September, 2004 Version No: 3.0 Page 18

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Compliance to the “spirit” of aseXML is an important aspect when considering
whether proposed schema changes comply with the aseXML guidelines.

2.8 CONTAINER ELEMENTS FOR REPEATED ELEMENTS

Where an element carries a minOccurs attribute with a value greater
than one, the repeated elements should be immediately enclosed by a
container element, whose name reflects the nature of the grouping.

An example is shown below.

<FaultDescriptionComments>

<Line>First line of comment</Line>

<Line>Second line of comment</Line>

</FaultDescriptionComments>

The container element name will typically, though not necessarily, be plural as
per section 5.5.

2.9 MAINTAINING ELEMENT ORDER

It is often the case that a given set of elements will appear in multiple places
within aseXML, though with differing optionality. Typical examples of this might
be report parameter formats for a particular transaction group or table
replication formats with common elements.

In this situation, it is recommended that preference be given to maintaining the
order of the elements across the multiple situations where they occur. Such an
approach is sometimes referred to as “parallel design”. This should be
contrasted against alternate options, such as ordering according to whether
the elements are mandatory or optional.

Adoption of this recommendation is likely to assist in simplifying the design of
applications designed to produce the formats.

28 September, 2004 Version No: 3.0 Page 19

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3. VERSION CONTROL

3.1 XML AND VERSIONING

Ask ten XML practitioners how to handle the issues associated with XML
versioning and you will undoubtedly receive ten divergent answers. Versioning
is complicated by issues such available XML tools and programming
techniques, version change rate, application development lifecycles and size
of user base.

There are however some basic building blocks from which XML versioning
schemes are generally constructed. This section provides some detail of these
blocks. For those familiar with XML and XML Schemas, section 3.2 describes
the specific way versioning is implemented in aseXML.

3.1.1 Options For Adding Version Information To XML
There are a number of ways to associate version information with XML.
Each is discussed below. It should be noted they are not mutually
exclusive and are often combined in practice.

• Maintain version information externally

Some transaction frameworks use bi-lateral agreements to
document version requirements for exchanged documents. The
documents themselves need not carry version information, or
carry minimal information to confirm conformance to the
agreement.

• Incorporate version information into element/attribute names

This approach has the advantage that different versions of the
same element/attribute may co-exist in one schema, but requires
micro-parsing of names to extract version information. Its effect is
also marked in terms of application code, since it incorporates
version information into the structure of the XML via its effect on
element/attribute names.

• Attach version attributes to elements

This approach is commonly used, since version information can
be viewed as metadata about the element. It is also less intrusive
than the previous option, since the version information is in the
content of the XML. Many of the XML recommendations employ
version attributes. This approach does not lend itself to versioning
of attributes.

28 September, 2004 Version No: 3.0 Page 20

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

• Incorporate version information into namespaces

By associating new versions of elements/attributes with different
namespaces, namespace aware processing code can make the
necessary logic adjustments for different versions. More detail on
namespaces is provided in following sections.

3.1.2 Namespaces
Namespaces are an important concept when considering XML and
versioning. Quoting from the “Namespaces in XML” specification,

“Software modules need to be able to recognise the tags and attributes
which they are designed to process, even in the face of “collisions”
occurring when markup is intended for some other software package
using the same element type or attribute name.”

“An XML namespace is a collection of names, identified by a URI
reference, [RFC2396], which are used in XML documents as element
types and attribute names”.

Some XML standards such as Scalar Vector Graphics (Appendix F.3) and
Signature Syntax and Processing have specified the use of multiple
namespaces to detect different versions of the specification.

Others, such as XSL Transformations attach a version attribute to top
level elements and define behaviour necessary to process XML
documents that use different versions and mechanisms to add extensions
to the base standard. In this manner, they avoid the need to change the
namespace used.

The quotes above could be interpreted to mean that different versions of
an element belong to different namespaces. Others argue for the use of
namespaces in a broader sense, for instance a namespace for everything
within aseXML regardless of version.

The jury is thus out as to what the XML community think is the best way
to incorporate namespaces in a versioning strategy, if at all.

3.1.3 Namespace Granularity
Assuming namespaces are to be used as part of a versioning strategy,
one of the design decisions to be made is how many namespaces to use.
The following table summarises the options and their advantages and
disadvantages.

28 September, 2004 Version No: 3.0 Page 21

http://www.w3.org/TR/SVG
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/XSLT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Approach Granularity Advantages Disadvantages

Single namespace Coarse Simple

No need to use
namespace prefixes in
instance documents via
use of default
namespace

No granularity

Alternate methods to track
version variations within a
document need to be
considered

Namespace per
element/attribute

High Fine version control

• Large number of
namespaces

• Complex management
at application level

• Use of multiple
namespaces
complicates schema
design and instance
documents

Namespace per
group of
elements/attributes
e.g. transaction
group

Medium • Parallels likely
participant support
of portions of the
specification

• Reasonable
granularity

• Complex management
at application level

• Use of multiple
namespaces
complicates schema
design and instance
documents

The issue is largely a trade-off between simplicity and insulation from
unnecessary change. Elements/attributes in one namespace are
insulated to some extent from changes in other namespaces, but the
penalty incurred is the need to manage versions of multiple namespaces.

3.1.4 XML Schemas
The “XML Schema” specification builds on the “Namespaces in XML”
specification by providing a mechanism to define the elements and
attributes belonging to a particular namespace. The particular namespace
is referred to as the “target namespace”. To validate an element/attribute,
a schema is needed whose target namespace matches the namespace of
the element/attribute.

Thus, the question naturally arises “Given an element of a particular
namespace, how do I obtain the corresponding schema?” Much of the
debate has centred on the use of a URI to identify a namespace.
Because one form of a URI is a URL, one approach is to use a URL for a
namespace and provide the corresponding schema via the URL. Many

28 September, 2004 Version No: 3.0 Page 22

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

have argued against this, indeed the “Namespaces in XML” specification
includes the sentence

“It is not a goal that it (a namespace name) be directly useable for
retrieval of a schema…”

The designers of the schema specification did provide a partial answer to
the question by defining a “schemaLocation” attribute that can be added
to an element as a way for its instance document originator to provide
assistance as to what the intended schema should be. The value of this
attribute may be one or more namespace/URI pairs. It is the usual
convention for the URIs to take the form of URL’s by which the schema
for the namespace may be retrieved.

The schemaLocation attribute is optional and even if present may be
ignored. Indeed, the specification goes on in “XML Schema Part 1:
Structures (Section 4.3.2)” to allow schema processors to pick and
choose from a variety of ways to retrieve schemas based on either the
namespace or the schemaLocation, from either a local cache or the
Internet.

3.2 aseXML AND VERSIONING

3.2.1 Guiding Principles
In selecting a versioning approach, aseXML has attempted to pick the
“middle road” that ensures possible changes in versioning strategy are
not precluded, while not unduly complicating the generation and
processing of instance documents. There is some overlap in the
techniques used, which will most likely disappear over time as a result of
experience, version support in transport frameworks, and new standards
addressing the issue of versioning XML.

The principles below have been used to guide the formulation of the
approach.

1. Minimise the amount of version information within instance
documents.

This ensures instance documents are simple to generate and
read.

2. Add version information in a way such that it can be
removed/ignored in the future.

This allows a smooth migration to standardised versioning
techniques in the future without, where possible, invalidating
existing instance documents.

3. Accommodate the need for applications to make processing
decisions on the basis of version.

As discussed in section 3.2.2, any version mechanism must
provide version information to applications. This should be done in
a manner that is simple to handle programmatically.

28 September, 2004 Version No: 3.0 Page 23

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3.2.2 Role Of Versioning
It is a subtle but important point to realise that the role of versioning in
aseXML documents is twofold.

1. Application Logic Control

On one hand, application code must be aware of any variations in the
structure or content of the XML elements with which it is dealing. Thus
the first role of versioning within aseXML is to allow application code
to make such processing decisions.

The important point to note is that the code is only interested in
changes specific to its XML elements. If the effects of change are to
be localised, changes elsewhere should have no impact on the ability
of the application code to process or generate unchanged XML
elements. Put another way, version information for a given XML
element should only change when its structure or content does.

2. Instance Document Validation

On the other hand, in line with section 2.2, a validating parser must be
able to check an incoming aseXML document against the relevant
XML Schema. Because the document may contain multiple versioned
elements, each of which having a different version history, the
Schema must be capable of handling this.

Thus the second role of versioning within aseXML is to support the
process of document validation.

• Implications for XML Schemas

aseXML uses an XML Schema to codify a cross-section of version
information, with associated structure and content definitions, that
was current at a given point in time. Each Schema is effectively a
“snapshot” of the latest definitions at a point in time.

There are a few important implications of this approach.

1. The definition of an unchanged XML element will be
included but unchanged across multiple snapshots.

Such an element may be delivered with the same version
information under any of the snapshots in which it was
captured.

2. Snapshot information need not be passed to application
code.

Application code is not interested in snapshots per se. All
the code requires is the XML fragment to be processed
and the associated information indicating the specific
version of the element with which it is dealing.

3. A snapshot contains only the latest definitions.

28 September, 2004 Version No: 3.0 Page 24

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

A given version of an element will only appear in a
snapshot if it was the current version at the point in time of
the snapshot. Put another way, it is not possible to deliver
in a single document a combination of element versions
that does not reflect historical reality.

• Implications for instance documents

In terms of instance documents, validation support should allow
an incoming document to flag with which snapshot the sender
believes it is compliant.

The receiver can use this information

1. to determine whether it supports the snapshot

2. to choose the XML Schema to be used by the parser to
confirm compliance to the snapshot.

3.2.3 Adding Version Information
Each of the options discussed in section 3.1.1 is considered below in the
light of sections 3.2.1 and 3.2.2.

• Maintain version information externally

Given the number of participants and the overheads of this
process, this option was not considered appropriate for aseXML,
especially in the initial stages of market development, where a
high rate of change was envisaged. By not explicitly providing
version information in the instance, this approach was also seen
as adding complexity to the process of indicating version
information to application code (see 3.2.1, point 3).

• Incorporate version information into element names

This approach was rejected because it did not allow version
information to be easily removed or ignored and was considered
to increase the complexity of producing instance documents (see
section 3.2.1, points 1 and 2).

• Attach version attributes to elements

Version attributes are used by aseXML to fulfil the first role of
versioning within aseXML (see section 3.2.2), which is to
provide element version information to applications.

They may easily be ignored if necessary in the future and may
easily be accessed by application code (see section 3.2.1, points
2 and 3). In addition, in the case where a fragment of an incoming
document is forwarded to an application, version attributes easily
travel with their corresponding element.

No versioning of attributes is supported independent of versioning
on elements.

28 September, 2004 Version No: 3.0 Page 25

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Section 3.2.7 provides further details of the use of version
attributes.

• Incorporate version information into namespaces

Namespaces are used to fulfil the second role of versioning
in aseXML (see section 3.2.2), which is to support the process
of document validation.

Section 3.2.4 provides further details of the use of namespaces.

3.2.4 Namespaces
aseXML will use a single namespace to cover all elements within it,
but will incorporate version information in the namespace,
effectively using a new namespace each time the specification is
changed.

Each namespace thus represents a snapshot of version information, as
discussed in section 3.2.2.

Instance documents will qualify their top-level element with the
aseXML namespace corresponding to a snapshot to which the
document conforms.

It should be noted that, ignoring the aseXML namespace declaration, an
instance document may be valid for multiple snapshots, and in this case,
it is possible for it be delivered under any of them. Procedural rules may
however constrain the allowable set of snapshots.

The reasons below were used in determining the use of namespaces by
aseXML.

• Use of one namespace is in line with the section 3.2.1 point 1, that is
simplicity of schemas and simplicity of instance documents.

• Some schema parsers (see section 3.1.4) may indirectly use
namespaces as a way of locating the corresponding schemas, and
hence information may be needed in the namespace to differentiate
between versions.

• The version information may easily be frozen should the need
disappear for its presence in the namespace.

• Given the large number of participants, and the varying timing of their
IT development cycles, use of multiple namespaces was seen as
adding an unnecessary layer of dependencies to the challenge of
progressing version changes to the aseXML standard.

3.2.5 Release Identifiers
A release identifier is used to identify each version snapshot of
aseXML. A release identifier starts with a lowercase “r” and is
followed by a whole number, referred to as the release number.

28 September, 2004 Version No: 3.0 Page 26

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Such an identifier is referred to as a production release, an example of
which is given below.

r100

A released version of the schema may require a patch if an error is
discovered, or update is required, following the schema release. A patch
release will normally follow an abridged change process to allow the
patch to be published quickly and outside the schema release schedule.

In order to identify a patch release, a patch extension will be
appended to the affected production release, being separated from it
by an underscore character. Such an identifier will be referred to as
a patch release.

The first letter of the patch extension will be ‘p’, followed by a sequence
number to identify the specific patch.

An example of a patch release is given below.

r100_p1

In order to develop new production releases, a development
extension may be appended to the affected production release,
being separated from it by an underscore character. Such an
identifier will be referred to as a development release.

The first letter of the development extension will indicate the particular
thread of development. It will be followed by a sequence number to allow
identification of the stage of development within the thread.

An example of a development release is given below.

r100_a5

Use of development releases is highlighted in the section 3.3.

Whenever they appear, release identifiers will be separated from other
text by an underscore character.

Release identifiers are incorporated into aseXML namespaces (see
section 4.1) and provide the content of version attributes (see section
3.2.7).

Common language usage often sees reference to the “version of
aseXML” or the “aseXML namespace”, where technically a release of
aseXML is intended. So, for instance,

“version r7 of aseXML”

is equivalent to

“the r7 namespace of aseXML”

which is equivalent to

“release r7 of aseXML”

28 September, 2004 Version No: 3.0 Page 27

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

or, for this release identifier,

“production release r7 of aseXML”.

All are synonyms for a particular snapshot of version information to be
used for document validation.

3.2.6 Schemas
For each aseXML namespace, a corresponding XML Schema will be
created.

Given that different products may use different strategies to obtain
schemas, it is not possible to be prescriptive in this standard as to how
the mapping between schema and namespace will be determined. In
order to facilitate different approaches, however, the rules below will be
used.

The URIs used in schemaLocation attributes will be URLs by which
the schema may be obtained.

Given knowledge of the base portion of a schemaLocation URL, it
will be possible to automatically generate the schemaLocation
attribute corresponding to a namespace.

The root element of each instance document will provide a
schemaLocation attribute for its corresponding aseXML namespace.

At first glance it may seem that dynamic fetching of schemas will not
occur, since application changes must precede presentation of
associated transactions for any meaningful work to be done. However, as
discussed in section 3.3, a participant might receive a transaction for a
version of aseXML not yet supported within their systems. In this case,
there is still an obligation to parse the transaction as per section 2.2, in
order to formulate an appropriate response.

3.2.7 Version Attributes
Version attributes will be attached to major elements of an aseXML
document to provide application code with version information
concerning the structure and content of these elements.

Version attributes will use the name version and contain a release
identifier.

Each time changes are required within aseXML, a new release
identifier will be created and assigned to those versioned elements
affected by the changes.

A by-product of this process will be a new version snapshot, identified by
the new release identifier, belonging to a new namespace, and whose
structure and content are defined by the corresponding schema.

28 September, 2004 Version No: 3.0 Page 28

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Multiple changes to a versioned element may be reflected in a single
change in the release identifier carried in the element’s version
attribute.

Over time, each versioned element will be assigned a subset of the
total set of release identifiers, based on its change history. Each
release in this subset is referred to as a “release point” and
indicates the release at which the contents of the element, and
hence the associated application semantics, changed.

Indications of changes to non-versioned elements “bubble up” to
the nearest enclosing versioned element. The scope of a change is
thus limited to the most tightly enclosing versioned element.

28 September, 2004 Version No: 3.0 Page 29

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

This approach has several features.

• Application code for a given versioned element need only know
how to generate and process a limited set of production releases,
in line with section 3.2.1, point 3. Code should be structured to
use version attributes to control variations in processing.

• Code written to generate a particular release of an element will not
be invalidated when a new snapshot is created as a result of
modifications in some other element.

• The presence of the version attribute allows future definition of
how applications might process versions later than those
supported, perhaps via a mechanism similar to “Forwards
Compatible Processing” in the XSL Transformation specification
(see section 3.1.2).

• Given that a query mechanism is available, an application having
a given version of a component rejected (presumably because of
lack of support within the recipient) may determine what versions
are common between the two participants and use the highest
version available.

• Examination of the schema for any snapshot will quickly reveal the
release point of each versioned element, since the definition of the
element will be carried forward with each new snapshot.

Whilst at first glance appearing somewhat complicated, the approach
above will allow participants to choose what subset of the release points
of each versioned element they implement, and does not restrict those
participants who wish to aggressively advance their IT infrastructure.

From an application perspective, the key is thus the selection of
containers to carry version information.

3.2.8 Selecting Elements To Version
In line with section 3.2.1 point 1, the number of elements carrying version
attributes needs to be limited to a manageable level.

An explicit mandatory version attribute is added to an element when it is
considered of sufficient importance from an application perspective to
warrant it.

It should be noted that where a versioned element is contained by another
versioned element, it is quite possible for the contained element to carry a
more recent release identifier than the containing element (see section
3.4.4).

The following rules may be used in assessing the need for a version
attribute on a particular element.

1. Is the element important in the overall framework of aseXML?

This rule has been applied to mandate the provision of a version
attribute on <Transaction> sub-elements (see section 9.3).

28 September, 2004 Version No: 3.0 Page 30

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

It would also allow future addition of version attributes to the aseXML
<Header> element (see section 9.2) or to the <aseXML> element
(see section 9.1) itself.

2. Is the element a significant data structure shared across multiple
transactions?

The aim here is to localise a change that would otherwise have a
significant version ripple effect across multiple transactions within
aseXML. The assumption is that a common piece of code may be
used to handle the structure and isolate any version differences from
calling code.

Localisation needs to be balanced against the desire to limit the
number of version attributes to a manageable level.

For instance, it may be more appropriate to change the version
number of several transactions rather than introduce a version
attribute to a shared element. If in doubt, the decision should be
biased towards minimising the number of versioned elements.

This rule would, for instance, allow the introduction of a version
attribute on the <Event> element in the case of a change to its
structure.

It is recommended that new significant structure definitions
considered likely candidates for future updates carry an initial
version attribute for consistency.

3. Is the element a container for multiple different formats, each of which
needs to be separately versioned?

This rule has been applied to support the inclusion of a
mandatory version attribute on any changes to concrete
derivations of abstract base types used to define elements within
aseXML.

Note that in this case, the version attribute is not associated
directly with the abstract element, rather it is part of the data
definition of the derived concrete type.

As an example, any changes to NMI Standing Data or table
replication formats (see section 12.1) will result in the new definition
carrying a version attribute.

It is recommended that new concrete derivations (as distinct
from modifications to existing definitions) carry an initial version
attribute for consistency.

Because this recommendation was not in force from the creation of
aseXML, aseXML schemas may contain some concrete type
definitions that do not include a version attribute.

28 September, 2004 Version No: 3.0 Page 31

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3.2.9 “Backwards compatible” changes
There are a number of circumstances in which application code may be
able to handle changes in the XML structure and content without needing
to refer to version information. For instance, code changed to
accommodate an increase in the length of a text element will inherently
handle any previous document that provided a value of shorter length.

The question this example raises is whether aseXML should distinguish
between

• changes that require the code to know which version of an
element they are dealing with, and

• changes that can be accommodated by common code logic.

This distinction is often referred to in terms of “versions” vs “revisions” or
“major” vs “minor” versions.

In the interests of simplicity and consistency, the aseXML versioning
model requires that ANY change in the structure or content of an XML
fragment results in a change in the version attribute of the nearest
enclosing versioned element.

Despite the resulting increased rate of change of version information,
application code is free to ignore the version information, or only trigger
on a subset of the release points.

The rules for modifying version information are thus simple to grasp and
easy to apply for any change scenario.

3.3 USING DEVELOPMENT IDENTIFIERS

This section presents a scenario to demonstrate the use of development
release identifiers in moving from one production release to the next.

3.3.1 Scenario
aseXML is at production release r100. It becomes evident that a new
production release is needed as a result of changes to the operation of
the market. An element in transaction T1 must be updated, the type
definition of which is also used by an element in T2.

Two organisations (A and B) agree to take the lead in development of the
change. The sequence of events is detailed in the next section and
shown diagrammatically in Figure 2.

3.3.2 Sequence of Events
1. The letter “a” is assigned to the development thread. In this case, a

type definition used by an element in T1 must change. The type
definition is also used by transaction T2. Transaction T3 is not affected
by the change. Because the affected element doesn’t carry a version
attribute, the transaction element definitions represent the nearest

28 September, 2004 Version No: 3.0 Page 32

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

enclosing versioned element and thus a new release point must be
used for T1 and T2.

2. A and B communicate privately and decide upon a first cut of the
changes.

3. A copy of the current production release of the aseXML schemas is
taken.

4. A and B agree on a development extension. A and B choose r100_a1.

5. All references to the namespace in the schema files are updated to the
development release, together with the version identifiers within the
affected schema filenames. The version attributes of the affected
transactions are updated to contain the development release identifier.

6. A and B enhance their infrastructure to support the changes. There
may be multiple iterations and depending on the schema infrastructure
used, the development release identifier may change as agreed by A
and B.

7. A and B are ready for interoperability testing and feel the change is
ready for public scrutiny.

8. An area within the web site containing the aseXML schemas is created
for the development release and the complete schema is placed on the
site.

9. As a result of testing between A and B and public comments, steps 4
to 8 may be repeated.

10. Agreement is reached between A and B that the change is a candidate
for production release. Checks are carried out to integrate any
changes as a result of other completed development threads.

11. A period is entered during which other organisations who choose to
enhance their infrastructure in parallel to A and B may now request A
and/or B to provide conformance testing of their implementation.

12. Agreement is reached amongst participants that the change is ready
for production release.

13. The next production release is assigned and step 5 performed using
the production release. In this scenario, the new release is r101.

It would however have been possible that r101 was released as a
result of a different development thread. According to the process
above, the changes in r101 would need to be rolled into the
development thread and the production release would be r102.

14. An area within the web site containing the aseXML schemas is created
for the production release and the complete schema is placed on the
site. The files for all development releases of this thread are deleted
from the site.

15. Other participants may now implement this release point of the
transactions according to their IT schedules.

28 September, 2004 Version No: 3.0 Page 33

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

28 September, 2004 Version No: 3.0 Page 34

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Release

Transaction Version

Transactions

Common Items

Description

r100_a1

C1+

r100_a1

C1 updated as part of T1 change

T1 version updated
T2 version updated (C1 common)
T3 version unchanged

A and B support release r100_a1
and corresponding changes to T1
and T2 application code

Other participants continue to
support r100

T1 T2

r100_a1

T3

r40 r90

C1

r100

T1 last changed at release r90
T2 last changed at release r55
T3 last changed at release r40

C1 used by both T1 and T2

All participants support r100

T1 T2

r55

T3

r40 r101

C1+

r101

T1 last changed at release 101
T2 last changed at release 101
T3 last changed at release r40

A and B support release r101 and
corresponding changes to T1 and
T2 application code

Other participants may support
r101

T1 T2

r101

T3

r40

Figure 2 – Introducing A Change To aseXML

28 September, 2004 Version No: 3.0 Page 35

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3.4 ARCHITECTURE IMPLICATIONS OF aseXML RELEASE MIGRATIONS

The version scheme of aseXML has been designed to allow as smooth a
transition as possible from one release to the next. It recognises that
synchronisation of IT development cycles across multiple organisations is
difficult to achieve and tries, where possible, to allow software upgrades to
occur independently.

This section suggests a number of architectural features that will further
minimise the impact of schema migrations on IT infrastructures and project
timings.

3.4.1 Accepting aseXML Messages

• Support Multiple Schemas

For many organisations, the changes in a new release may not
affect any of the transactions they support.

The only difference in accepted instance documents between the
previous and new release will be the namespace of the top-level
element. The structure and version information of the accepted
transactions remains the same and thus represents no change to
application logic.

Architectures should thus support the ability to accept transactions
under a number of different schema releases. This allows other
organisations to move their produced messages to a later schema
release without significantly impacting those organisations for
which the changes are of no interest.

The version scheme assumes that participants will accept new
schema releases as they become available even though the
changes may not affect their infrastructure.

• Isolate Validity Checking From Handler Selection

The decision as to which handler to invoke for a particular
transaction should be based on a combination of the transaction
group, transaction name and version attribute of the transaction
itself.

The namespace information should only be used in the process of
validating the message.

This allows the message to be validated under multiple schemas
without needing to change the handler selection logic each time a
new namespace is produced.

28 September, 2004 Version No: 3.0 Page 36

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

• Simple schema installation

It is important that the process of adding support for validation of
instance documents against a new schema should be as simple
as possible. Depending on the way in which the mapping of
namespace to schema is performed, this may be as simple as
placement of the schema files in the appropriate directory.

3.4.2 Producing aseXML Messages

• Selecting The Message Namespace

The namespace used on outgoing messages need only change
when the release point of one of the produced elements changes.
It is possible for the release on output to lag the release on input.

The output release should thus be decoupled from the accepted
input releases.

• Simple Control Of Namespace/SchemaLocation

Over time, the number of schema releases in use may grow to the
point where it is appropriate to remove one or more of the older
releases from use. If the output release being used is one of these
older releases, migrating to a newer release on output may simply
involve a change of namespace.

The process of controlling the namespace information in a
produced aseXML message should thus be as simple as possible.

3.4.3 Minimising Code Branches
It is generally accepted in software development that where possible,
reducing the number of logic branches in code enhances its
maintainability.

While aseXML provides version attributes to facilitate such branches,
where possible updates to versioned elements should be designed such
that a single code module can handle the variability caused by the various
versions without reference to the version information. The points below
suggest ways in which this can be achieved. The focus is on extending
rather than restricting the contents of transactions.

• Optional Elements/Attributes

Where possible, new elements/attributes added to trigger
additional business logic should be made optional. This allows for
the possibility that the recipient may not be interested in the
additional functionality, while allowing the producer to move their
infrastructure forward.

28 September, 2004 Version No: 3.0 Page 37

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

• Ignore Unknown Elements/Attributes

Code should be designed to ignore unknown or unexpected
elements/attributes rather than flag these as an error. This is a
natural extension of the use of optionality but may apply to
mandatory elements/attributes in some circumstances.

• Extend Content Models

For data types such as enumerations, removal of values should
be avoided where possible since it automatically invalidates
existing code producing the element/attribute concerned.

• Handle Unknown Values

Default handling of unrecognised values should be employed and,
where possible, not result in errors or transaction rejections.

3.4.4 Release Example
The table below shows a possible sequence of releases affecting a set of
versioned elements. T4 and T5 share a versioned element E1. The table
contents show the release point for each versioned element under each
release.

Release
Versioned Element

r1 r2 r3 r4 r5

T1 r1 r2 r2 r4 r4

T2 r1 r1 r3 r3 r3

T3 r1 r1 r1 r1 r1

E1 r3 r3 r3

T4(E1) r1 r1 r1 r1 r5

T5(E1) r1 r1 r1 r4 r5

A few points should be noted from the above example.

1. T3 does not change across all the releases and could be delivered
under any of them. An organisation only interested in producing T3
could leave the release of their produced messages at r1.

2. T1 changed at release r2 and r4. T2 changed at release r3.

3. E1 initially did not have a version attribute, but at release r3 was
considered of sufficient importance to have one introduced. The
release point of T4 and T5 at release r3 thus did not change, since the
version attribute on E1 limited the effect of the change. The effect of

28 September, 2004 Version No: 3.0 Page 38

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

this was that the release point of the contained element (E1) was
more recent than that of the containing element (T4, T5).

4. At release r4, T5 was altered. Because the release point of E1
remained unchanged, the changes were either outside the E1
element, or were changes to the use of E1 in T4, e.g. its optionality or
cardinality.

5. At release r5, both T4 and T5 were altered, but E1 again remained
unchanged.

3.5 aseXML VERSIONING STEP BY STEP

This section presents a sequence of changes to the allowable content and
structure of a sample aseXML message. Further information on the exact
structure of aseXML messages may be found in subsequent chapters.

For each change, the effects on the version information are discussed.
Affected elements for each step are highlighted in bold in the XML.

28 September, 2004 Version No: 3.0 Page 39

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3.5.1 The Initial Message
<?xml version="1.0"?>
<ase:aseXML xmlns:ase="urn:aseXML:r7"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:aseXML:r7
http://www.nemmco.com.au/aseXML/schemas/r7/aseXML_r7.xsd">
 <Header>
 <EH1>EH1 Text</EH1>
 <EH2>EH2 Text</EH2>
 </Header>
 <Transactions>
 <Transaction>
 <T1 version="r3">
 <E1>4.32</E1>
 <AbstractE1 xsi:type="Type1">
 <EA1>EA1 String</EA1>
 </AbstractE1>
 </T1>
 </Transaction>
 <Transaction>
 <T2 version="r4">
 <EA1>E2 String</EA1>
 <E3>
 <E3a>E3a text</E3a>
 </E3>
 <E4>1.2</E4>
 </T2>
 </Transaction>
 <Transaction>
 <T3 version="r4">
 <E5>5050</E5>
 <E6>2001-05-01</E6>
 <AbstractE2 xsi:type="Type2">
 <EA2>EA1 String</EA2>
 <EA3>1999-01-01</EA3>
 </AbstractE2>
 </T3>
 </Transaction>
 <Transaction>
 <T4 version="r6">
 <E4>4.32</E4>
 <AbstractE2 xsi:type="Type2">
 <EA4>EA3 String</EA4>
 </AbstractE2>
 </T4>
 </Transaction>
 </Transactions>
</ase:aseXML>

The points below should be noted with regard to this message.

• The message uses release r7.

• The release points of versioned elements within the message will
not in general match that of the message.

• <T3> and <T4> use a common element, <AbstractE2>, whose
actual contents are validated according to the value of the
xsi:type attribute.

28 September, 2004 Version No: 3.0 Page 40

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3.5.2 The Content Model Changes For An Isolated Element
<?xml version="1.0"?>
<ase:aseXML xmlns:ase="urn:aseXML:r8"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:aseXML:r8
http://www.nemmco.com.au/aseXML/schemas/r8/aseXML_r8.xsd">
 <Header>
 <EH1>EH1 Text</EH1>
 <EH2>EH2 Text</EH2>
 </Header>
 <Transactions>
 <Transaction>
 <T1 version="r8">
 <E1>4.3</E1>
 <AbstractE1 xsi:type="Type1">
 <EA1>EA1 String</EA1>
 </AbstractE1>
 </T1>
 </Transaction>
 <Transaction>
 <T2 version="r4">
 <EA1>E2 String</EA1>
 <E3>
 <E3a>E3a text</E3a>
 </E3>
 <E4>1.2</E4>
 </T2>
 </Transaction>
 <Transaction>
 <T3 version="r4">
 <E5>5050</E5>
 <E6>2001-05-01</E6>
 <AbstractE2 xsi:type="Type2">
 <EA2>EA1 String</EA2>
 <EA3>1999-01-01</EA3>
 </AbstractE2>
 </T3>
 </Transaction>
 <Transaction>
 <T4 version="r6">
 <E4>4.32</E4>
 <AbstractE2 xsi:type="Type2">
 <EA4>EA3 String</EA4>
 </AbstractE2>
 </T4>
 </Transaction>
 </Transactions>
</ase:aseXML>

The points below should be noted with regard to this message.

• The content model for element <E1> was altered to limit it to one
decimal place.

• <T1> is the nearest enclosing versioned element for <E1>, so it
takes on a new release point of r8.

• Since <E1> was only used by <T1>, only the version information
of <T1> was affected.

28 September, 2004 Version No: 3.0 Page 41

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3.5.3 The Content Model Changes For A Shared Element
<?xml version="1.0"?>
<ase:aseXML xmlns:ase="urn:aseXML:r9"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:aseXML:r9
http://www.nemmco.com.au/aseXML/schemas/r9/aseXML_r9.xsd">
 <Header>
 <EH1>EH1 Text</EH1>
 <EH2>EH2 Text</EH2>
 </Header>
 <Transactions>
 <Transaction>
 <T1 version="r8">
 <E1>4.3</E1>
 <AbstractE1 xsi:type="Type1">
 <EA1>EA1 String</EA1>
 </AbstractE1>
 </T1>
 </Transaction>
 <Transaction>
 <T2 version="r9">
 <EA1>E2 String</EA1>
 <E3>
 <E3a>E3a text</E3a>
 </E3>
 <E4>A string</E4>
 </T2>
 </Transaction>
 <Transaction>
 <T3 version="r4">
 <E5>5050</E5>
 <E6>2001-05-01</E6>
 <AbstractE2 xsi:type="Type2">
 <EA2>EA1 String</EA2>
 <EA3>1999-01-01</EA3>
 </AbstractE2>
 </T3>
 </Transaction>
 <Transaction>
 <T4 version="r9">
 <E4>Another string</E4>
 <AbstractE2 xsi:type="Type2">
 <EA4>EA3 String</EA4>
 </AbstractE2>
 </T4>
 </Transaction>
 </Transactions>
</ase:aseXML>

The points below should be noted with regard to this message.

• The content model for element <E4> was altered from a decimal
to a string.

• <T2> and <T4> are the nearest enclosing versioned elements for
<E4>, so both take on a new release point of r9.

28 September, 2004 Version No: 3.0 Page 42

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3.5.4 The Content Model Changes For A Shared Element (2)
<?xml version="1.0"?>
<ase:aseXML xmlns:ase="urn:aseXML:r10"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:aseXML:r10
http://www.nemmco.com.au/aseXML/schemas/r10/aseXML_r10.xsd">
 <Header>
 <EH1>EH1 Text</EH1>
 <EH2>EH2 Text</EH2>
 </Header>
 <Transactions>
 <Transaction>
 <T1 version="r8">
 <E1>4.3</E1>
 <AbstractE1 xsi:type="Type1" version="r10">
 <EA1>19.2</EA1>
 </AbstractE1>
 </T1>
 </Transaction>
 <Transaction>
 <T2 version="r10">
 <EA1>2.4</EA1>
 <E3>
 <E3a>E3a text</E3a>
 </E3>
 <E4>A string</E4>
 </T2>
 </Transaction>
 <Transaction>
 <T3 version="r4">
 <E5>5050</E5>
 <E6>2001-05-01</E6>
 <AbstractE2 xsi:type="Type2">
 <EA2>EA1 String</EA2>
 <EA3>1999-01-01</EA3>
 </AbstractE2>
 </T3>
 </Transaction>
 <Transaction>
 <T4 version="r9">
 <E4>Another string</E4>
 <AbstractE2 xsi:type="Type2">
 <EA4>EA3 String</EA4>
 </AbstractE2>
 </T4>
 </Transaction>
 </Transactions>
</ase:aseXML>

The points below should be noted with regard to this message.

• The content model for element <EA1> was altered from a string to
a decimal.

• In the case of <T1>, because <EA1> is within a concrete
derivation of an abstract type, a version attribute is added to
Type1. The release point of <T1> thus remains unchanged.

• In the case of <T2>, the <T2> element is the nearest versioned
element and so it moves to the r10 release point.

28 September, 2004 Version No: 3.0 Page 43

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3.5.5 The Structure Changes For A Shared Concrete Type
<?xml version="1.0"?>
<ase:aseXML xmlns:ase="urn:aseXML:r11"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:aseXML:r11
http://www.nemmco.com.au/aseXML/schemas/r11/aseXML_r11.xsd">
 <Header>
 <EH1>EH1 Text</EH1>
 <EH2>EH2 Text</EH2>
 </Header>
 <Transactions>
 <Transaction>
 <T1 version="r8">
 <E1>4.3</E1>
 <AbstractE1 xsi:type="Type1" version="r10">
 <EA1>19.2</EA1>
 </AbstractE1>
 </T1>
 </Transaction>
 <Transaction>
 <T2 version="r10">
 <EA1>2.4</EA1>
 <E3>
 <E3a>E3a text</E3a>
 </E3>
 <E4>A string</E4>
 </T2>
 </Transaction>
 <Transaction>
 <T3 version="r4">
 <E5>5050</E5>
 <E6>2001-05-01</E6>
 <AbstractE2 xsi:type="Type2" version="r11">
 <EA2>EA1 String</EA2>
 <EA3>1999-01-01</EA3>
 <EA5>true</EA5>
 </AbstractE2>
 </T3>
 </Transaction>
 <Transaction>
 <T4 version="r9">
 <E4>Another string</E4>
 <AbstractE2 xsi:type="Type2" version="r11">
 <EA4>EA3 String</EA4>
 <EA5>false</EA5>
 </AbstractE2>
 </T4>
 </Transaction>
 </Transactions>
</ase:aseXML>

The points below should be noted with regard to this message.

• An additional element is added to the end of the definition of
concrete derivation Type2. As a result, a version attribute is
added.

• The release point of <T3> and <T4> remain unchanged, since the
version attribute on Type2 limits the effect of the change.

28 September, 2004 Version No: 3.0 Page 44

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3.5.6 The Optionality Of An Element is Changed
<?xml version="1.0"?>
<ase:aseXML xmlns:ase="urn:aseXML:r12"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:aseXML:r12
http://www.nemmco.com.au/aseXML/schemas/r12/aseXML_r12.xsd">
 <Header>
 <EH1>EH1 Text</EH1>
 <EH2>EH2 Text</EH2>
 </Header>
 <Transactions>
 <Transaction>
 <T1 version="r8">
 <E1>4.3</E1>
 <AbstractE1 xsi:type="Type1" version="r10">
 <EA1>19.2</EA1>
 </AbstractE1>
 </T1>
 </Transaction>
 <Transaction>
 <T2 version="r12">
 <EA1>2.4</EA1>
 <E3>
 <E3a>E3a text</E3a>
 </E3>
 <E4>A string</E4>
 </T2>
 </Transaction>
 <Transaction>
 <T3 version="r4">
 <E5>5050</E5>
 <E6>2001-05-01</E6>
 <AbstractE2 xsi:type="Type2" version="r11">
 <EA2>EA1 String</EA2>
 <EA3>1999-01-01</EA3>
 <EA5>true</EA5>
 </AbstractE2>
 </T3>
 </Transaction>
 <Transaction>
 <T4 version="r9">
 <E4>Another string</E4>
 <AbstractE2 xsi:type="Type2" version="r11">
 <EA4>EA3 String</EA4>
 <EA5>false</EA5>
 </AbstractE2>
 </T4>
 </Transaction>
 </Transactions>
</ase:aseXML>

The points below should be noted with regard to this message.

• The <E4> element in <T2> is changed from being optional to
mandatory.

• The release point of <T2> changes to reflect the change in
optionality of <E4>.

• While <T4> also contains <E4>, the use of <E4> in <T4> remains
unchanged and hence there is no change in its release point.

28 September, 2004 Version No: 3.0 Page 45

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

3.5.7 Version Attribute Added
<?xml version="1.0"?>
<ase:aseXML xmlns:ase="urn:aseXML:r13"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:aseXML:r13
http://www.nemmco.com.au/ase
 <Header version="r13">

XML/schemas/r13/aseXML_r13.xsd">

 <EH1>EH1 Text</EH1>
 <EH2>EH2 Text</EH2>
 <EH3>false</EH3>
 </Header>
 <Transactions>
 <Transaction>
 <T1 version="r8">
 <E1>4.3</E1>
 <AbstractE1 xsi:type="Type1" version="r10">
 <EA1>19.2</EA1>
 </AbstractE1>
 </T1>
 </Transaction>
 <Transaction>
 <T2 version="r12">
 <EA1>2.4</EA1>
 <E3>
 <E3a>E3a text</E3a>
 </E3>
 <E4>A string</E4>
 </T2>
 </Transaction>
 <Transaction>
 <T3 version="r4">
 <E5>5050</E5>
 <E6>2001-05-01</E6>
 <AbstractE2 xsi:type="Type2" version="r11">
 <EA2>EA1 String</EA2>
 <EA3>1999-01-01</EA3>
 <EA5>true</EA5>
 </AbstractE2>
 </T3>
 </Transaction>
 <Transaction>
 <T4 version="r9">
 <E4>Another string</E4>
 <AbstractE2 xsi:type="Type2" version="r11">
 <EA4>EA3 String</EA4>
 <EA5>false</EA5>
 </AbstractE2>
 </T4>
 </Transaction>
 </Transactions>
</ase:aseXML>

The points below should be noted with regard to this message.

• The <EH3> element is added to <Header>.

• Since there is no enclosing versioned element, a version attribute
is added to <Header>.

28 September, 2004 Version No: 3.0 Page 46

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

4. NAMESPACES

4.1 aseXML NAMESPACE FORMAT

The aseXML namespace name will use a URN (see RFC 2396) of the
format shown below,

urn:aseXML:ReleaseIdentifier

where

• ReleaseIdentifier is the release identifier of the namespace as per
section 3.2.5.

Thus an example of the aseXML namespace might be

urn:aseXML:r100

4.2 DEFAULT NAMESPACES

The XML Namespace specification allows the use of a default namespace to
simplify, in some cases, the need to identify what elements come from what
namespace.

Schemas for aseXML should use a default namespace matching the
targetnamespace. For schemas not specifying a targetnamespace, no
default namespace should be defined.

 Instance documents should not use a default namespace due to the
element qualification style being used (see section 6.7). Rather, they
should qualify the root element with the appropriate aseXML namespace.

28 September, 2004 Version No: 3.0 Page 47

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

4.3 NAMESPACE PREFIXES

The case-sensitive namespace prefixes in the table below will be used in
schemas and instance documents.

Namespace Prefix

World Wide Web Consortium

http://www.w3.org/2001/XMLSchema xsd

http://www.w3.org/2001/XMLSchema-
instance

xsi

http://www.w3.org/1999/XSL/Transform xsl

http://www.w3.org/1999/XSL/Format fo

aseXML

urn:aseXML:r? ase

28 September, 2004 Version No: 3.0 Page 48

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

5. SCHEMA ORGANISATION

5.1 SCHEMALOCATION URLs

As per the guidelines discussed in section 3.2.6, schemas need to be able to
be fetched from the web via HTTP. In addition, the generation of a
schemaLocation attribute for a given namespace should be able to be
automated.

It is envisaged that initially NEMMCO will host the aseXML schema files, but
that in the longer term, a more suitable location may be found.

Given that the schemaLocation attribute may contain more than one
namespace/URI pair for a single namespace, such a move is easily
accommodated.

The format of a URL for use in schemaLocation attributes is shown
below;

WebSiteRoot/schemas/ReleaseIdentifier/aseXML_ReleaseIdentifier.xsd

where

• WebSiteRoot is the root portion of the URL needed to gain access to
the web site.

• ReleaseIdentifier is that of the corresponding namespace and
complying with section 3.2.5.

Thus, an example of a URL might be

http://www.nemmco.com.au/aseXML/schemas/r100/aseXML_r100.xsd

The ReleaseIdentifier is included in the filename portion of the URL so that the
filename remains unique even when separated from the rest of the URL, for
instance in a local parser cache. The ReleaseIdentifier is also included in the
URL path in line with section 3.2.6.

All resources under a given ReleaseIdentifier directory will carry a
ReleaseIdentifier as the last part of the filename prior to the extension.

The ReleaseIdentifier on each file will reflect the release at which the file
last changed. This will assist in identifying the set of schema files
affected by a particular release. A side effect of this is that the same
schema file may appear in the directories of multiple releases.

All schema files will use a .xsd extension.

28 September, 2004 Version No: 3.0 Page 49

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

5.2 TRANSACTION FILES

In order to improve the maintainability of the aseXML schemas, multiple
files will be used to hold the schema for a particular release of aseXML.
These files will be included into the schema identified by section 5.1 via
the XML Schema include mechanism (see section 5.3).

A file may contain all transaction exchanges for an application, a single
transaction exchange within an application or one transaction within a
transaction exchange. The choice is left to the developer, with the overriding
principle being to minimise the number of files used.

In the case of a single file per application, the filename will take the form

ApplicationTitle_ReleaseIdentifier.xsd

where

• ApplicationTitle is replaced with the short title of the application. It
may contain alphanumeric characters and will use title case.

• ReleaseIdentifier is that of the corresponding namespace and will
comply with section 3.2.5.

An example of such a file might be

NMIDataAccess_r100.xsd

In the case of a single file per transaction exchange, the filename will
take the form

ExchangeTitle_ReleaseIdentifier.xsd

where

• ExchangeTitle is replaced with the short title of the transaction
exchange. It may contain alphanumeric characters and will use title
case.

• ReleaseIdentifier is that of the corresponding namespace and will
comply with section 3.2.5.

An example of such a file might be

NMIDiscovery_r100.xsd

28 September, 2004 Version No: 3.0 Page 50

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

In the case of a file per transaction of a transaction exchange, the
filenames will take the form

ExchangeTitleTransactionDescription_ReleaseIdentifier.xsd

where

• ExchangeTitle is replaced with the short title of the transaction
exchange as above.

• TransactionDescription is replaced with the short title of the
transaction in question. It may contain alphanumeric characters and
will use title case. In the common case of a single, two-way
exchange, the texts “Request” and “Response” will be used.

• ReleaseIdentifier is that of the corresponding namespace and will
comply with section 3.2.5.

An example of the files in this case might be

NMIDiscoveryRequest_r100.xsd

NMIDiscoveryResponse_r100.xsd

5.3 SCHEMA INCLUSION

Where schemas are included in other schemas via an <include> element,
only relative URLs will be used consisting of the filename only.

An example of an include element within a schema is given below.

<include schemaLocation=”NMIDiscovery_r100.xsd”/>

The included schema should NOT have a targetNamespace attribute and
should not use a default namespace, in accordance with section 1.5,
reference 2.

5.4 COMMON SCHEMAS

As a minimum, the type definitions common across multiple
transactions will be split across three files as shown in the table below.
See section 6.5 for a discussion of abstract types.

Where a group of common definitions logically stands alone, these
should be placed in their own schema file. An example of this might be
type definitions for addresses.

28 September, 2004 Version No: 3.0 Page 51

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Schema File Usage

Common_r?.xsd Concrete definitions for common types

Abstract definitions for fuel specific variants
(see section 6.5)

Gas_r?.xsd Concrete derivations for gas of abstract types

Gas specific type definitions

Electricity_r?.xsd Concrete derivations for electricity of abstract
types

Electricity specific type definitions

5.5 ELEMENTS/TYPES

Element and type names will use title case and alphanumeric characters.

An example might be

StreetName

Plural names should only be used for collections, typically where
repeating sub-elements are expected.

Element/type names should be kept to 40 characters in length.

Where acronyms cause two upper case characters to be adjacent, they
may be separated by an underscore to improve clarity.

An example might be

PO_Box

Where possible, an element name and its corresponding type name should be
identical.

5.6 TRANSACTION ELEMENTS

The names used for elements representing each transaction will take the
form

ExchangeTitleTransactionDescription

where

• ExchangeTitle is replaced with the short title of the transaction
exchange as in section 5.2.

28 September, 2004 Version No: 3.0 Page 52

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

• TransactionDescription is replaced with the short title of the
transaction as in section 5.2.

Examples of elements might be

NMIDiscoveryRequest

NMIDiscoveryResponse

There will be a type per transaction allowing them to be individually checked
against a schema. The type and element will use the same name as per
section 5.5.

5.7 ATTRIBUTES

Attribute names will use title case and alphanumeric characters with the
first letter lowercase.

An example might be

version

This is in keeping with the formatting used in the XML standards (c.f.
schemaLocation).

Attribute names should be kept to 25 characters in length.

28 September, 2004 Version No: 3.0 Page 53

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

6. SCHEMA FEATURES

6.1 XML DECLARATION

All schemas will include an XML declaration.

An example is shown below.

<?xml version=”1.0” ?>

The default encoding of UTF-8 is assumed. All XML implementations must
support UTF-8 to comply with the Extensible Markup Language (XML) 1.0
specification, with the ASCII character set being a subset of it.

6.2 ANONYMOUS vs NAMED TYPES AND DATA DICTIONARIES

The XML Schema standard allows for types to be defined in-line at their point
of use (anonymous types) or to be named explicitly. Whilst the former
approach leads to more compact definitions, it makes the automated
production of data dictionaries from the schemas more difficult. Additional
information with regards to a type more logically resides with an explicit
definition of the type, rather than embedded within a transaction.

As a result, authors are encouraged to define named types for data items and
item groups.

6.3 ANNOTATIONS

Annotations allow association of comments with arbitrary elements within a
schema and provide a way to make schemas somewhat self-documenting.
Tools such as XMLSpy display these comments when creating XML
documents from the schemas.

The use of annotations is encouraged within aseXML schemas.

As a minimum, each schema file and type/element definition will include
an annotation containing a brief description of its purpose.

For transaction elements, the description should include the
TransactionGroup to which the transaction belongs (see section 9.2.4).

The definition of the annotation element is such that it allows user defined
content in terms of other markup. To further facilitate the automatic production
of data dictionaries, three sub-elements of the documentation element are
recommended;

<ChangeHistory> - documents what has been changed

<DeveloperNotes> - documents why changes were made

<UsageNotes> - information to assist the creators of aseXML
compliant transactions

28 September, 2004 Version No: 3.0 Page 54

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

6.4 SIMPLE TYPES

In order to maximise the value of the schema in validating instance
documents, simple types will be designed to be as restrictive as
possible. This is achieved by the use of the facets facility within XML
Schemas.

By preference, the enumeration facet should be used where possible, as
discussed in section 2.4.

6.5 HANDLING FUEL SPECIFIC VARIATIONS

In order to accommodate multiple fuels within the aseXML transactions, it will
be necessary to allow for element variants. The aim should be to minimise any
duplication and maximise the parser’s ability to reject invalid document
instances.

XML schemas provide two mechanisms by which variants might be achieved
– choice elements and type derivation by extension.

Choice elements allow one of a number of elements to appear at a given
location in a document instance. The advantage of this approach is that the
name of the included element clearly indicates its semantics. A choice
between multiple groups of elements is also possible.

Type derivation by extension follows the classical object–oriented paradigm
where the derived types may be used anywhere that the base type appears in
a schema. In addition, the base type may be declared as abstract forcing only
the derived types to be valid in an instance document. In order to assist the
parser in determining the appropriate type, instance documents must provide
the xsi:type attribute on elements of the derived types. Abstract definitions are
only supported on complex types.

By preference, type derivation by extension from an abstract base type
should be used to resolve fuel variants. The base type will be defined in
the Common_r?.xsd file with the abstract attribute set to true. The fuel
specific variants should be defined in the appropriate fuel type file. Use
of abstract types will allow commonality of transactions across fuels
whilst collecting the fuel specific variants in a common location.

Where there is little commonality between fuel variants, or where simple
types are involved, use of a choice may be preferable. Use of choice
statements leads to simpler instance documents but has the
disadvantage that the choice statement must appear in the schema
wherever the choice between fuel variants is required.

The xsi:type attribute will allow applications to easily detect which fuel
type is involved.

6.6 aseXML ATTRIBUTES

Where attributes are defined for aseXML elements, the issues below should
be considered.

28 September, 2004 Version No: 3.0 Page 55

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

6.6.1 Default Values
In order to make instance documents as self-explanatory as
possible, it is desirable that attribute definitions in aseXML schemas
force the inclusion of the attribute in all instance documents.

6.6.2 ID And IDREF
Where ID and IDREF attributes are used to provide linkage between
elements, the ID value used need only be unique to the document
instance with no requirement for global uniqueness.

6.7 ELEMENT AND ATTRIBUTE QUALIFICATION

Both elements and attributes will use the default values for namespace
qualification, i.e. “unqualified”. Only top-level elements in instance
documents will need to be qualified with the version of the namespace
name corresponding to the release point of the transactions.

28 September, 2004 Version No: 3.0 Page 56

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

7. INSTANCE DOCUMENTS

7.1 XML DECLARATION

All instance documents will include an XML declaration identical to that
of the schemas.

7.2 DEFAULT NAMESPACES

Default namespaces will not used in instance documents, due to the
qualification style being used (see section 6.7). Top-level elements should be
explicitly prefixed with “ase” as per section 4.3.

7.3 SCHEMALOCATION ATTRIBUTE

Whenever an aseXML namespace is declared, the corresponding
xsi:schemaLocation attribute should be included in the instance document.
Refer to section 5.1 for details.

7.4 DECLARING NAMESPACES FROM THE XML STANDARDS

Declarations for namespaces such as the XML Schema Instance namespace
will occur on the top-level element of any instance document. The prefixes
used will follow section 4.3.

28 September, 2004 Version No: 3.0 Page 57

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

8. TRANSPORT, ENVELOPE OR TRANSACTION

In order to clearly identify what it is that needs to be specified as part of producing
the transactions for a given application, a distinction needs to be made between
the XML defined for each transaction and the XML needed to carry information
about the transaction.

Figure 3 presents a high level logical view of the IT framework needed by a
participant to handle aseXML transactions. This is a simplification of the XML
stack presented in the white paper with all layers below the envelope collapsed
into the Transport layer.

In this model, it is the responsibility of the Transport/Envelope layers to provide
the meta-information about the transaction. Once the XML for these layers is
standardised, developers of a process need only consider the XML needed at the
transaction layer.

8.1 TRANSPORT

The purpose of the transport layer is to accept incoming requests, process
their associated security information, and parse the resulting transaction for
validity via the associated schemas.

Depending on the nature of the transaction routing used, the transport layer
may pass information about the context such as transaction reference
numbers and authenticated sender and other third parties to the transaction
routing function. Alternatively, the routing function may choose to ignore this
information and rely on it being within the transaction envelope, or validate
that the transport and envelope information are consistent.

28 September, 2004 Version No: 3.0 Page 58

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

TRANSACTIONENVELOPETRANSPORT

Security

Optional
Internal

Transaction
Format

Conversion

Transaction
Routing

Addressing and
Context

Management

Error
Reporting

INTERNET

Protocol
Handling

T1 Processor

T2 Processor

T3 Processor

Figure 3 – High Level XML Application Architecture

28 September, 2004 Version No: 3.0 Page 59

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

8.2 ENVELOPE

The purpose of the envelope is to encapsulate all possible transactions within
aseXML and provide a consistent structure for the transaction routing function
to determine what transaction handler should process the transaction. In
addition, it provides context from the sender that should be carried into the
response to allow them to associate the response with their request.

The transaction routing function may choose to rely on the sender information
provided by the transport layer, or may provide additional, application specific
authentication mechanisms. The sender information may be provided explicitly
(connectionless) or implied by a session handle (connection oriented)
provided by the transport layer.

The envelope also provides a mechanism for consistent error reporting.

Agreement on the envelope need only be achieved once for aseXML and
documented independent of individual transactions or processes.

8.3 TRANSACTION

The transaction layer is interested only in the minimal set of information
necessary to process the transaction and produce the required response.

It assumes that other layers have dealt with security and access issues. The
focus is on the business function rather than the IT plumbing.

28 September, 2004 Version No: 3.0 Page 60

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

9. ENVELOPE

9.1 INTRODUCTION

Having discussed the separation of envelope from transaction in chapter 8,
this chapter documents the envelope to be used for aseXML.

The envelope consists of three parts:

1. a top level <aseXML> element

2. a <Header> sub-element

3. a payload sub-element.

For transactions, the payload sub-element used is <Transactions>.
For the <Acknowledgements> payload sub-element, refer to section
10.5.

The fields of the <Header> and <Transactions> sub-elements are
described in detail in subsequent sections.

The entire XML tree starting with the <aseXML> element constitutes an
aseXML message (see section 1.7).

9.2 <Header> SUB-ELEMENT

The purpose of the header element is to

• Identify the business parties involved in the transaction exchange.

• Uniquely identify each aseXML message.

• Provide information to allow the routing of the payload element to the
appropriate application.

An example of a <Header> sub-element is shown below.

<Header>

 <From>…</From>

 <To>…</To>

 <MessageID>…</MessageID>

 <MessageDate>…</MessageDate>

 <TransactionGroup>…</TransactionGroup>

 <Priority>…</Priority>

 <SecurityContext>…</SecurityContext>

 <Market>NEM</Market>

</Header>

28 September, 2004 Version No: 3.0 Page 61

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Each sub-element of the <Header> is described below.

9.2.1 <From>, <To> (Mandatory)
The <From> and <To> elements identify the business parties involved.

The value of the element is the string used to uniquely identify each party.

 A context attribute defines the format of the identifier. By default, National
Electricity Market participant identifiers are assumed (context=”NEM”),
however Australian Business Numbers are also supported
(context=”ABN”).

9.2.2 <MessageID> (Mandatory)
The sender of an aseXML message assigns it a unique identifier and
places it in this element. The sender is at liberty to design the format, but
it should consist only of alphanumeric characters and the hyphen
character.

It is recommended that Universally Unique Identifiers (see section 1.5
reference 3) be used for MessageIDs where no alternate system exists.

It should be noted that while Universally Unique Identifiers guarantee
global uniqueness, the MessageID does not need to be globally unique –
it need only be unique to the sender.

This field is important in the consideration of the message
acknowledgement process (see chapter 10).

Where a message is rejected (see chapter 10), a new MessageID should
be allocated when it is resubmitted.

9.2.3 <MessageDate> (Mandatory)
The <MessageDate> element is the time at which the message was
generated by the sender, and should be indicated to the millisecond. Note
that this is not necessarily the same as the time it was delivered to the
receiver.

9.2.4 <TransactionGroup> (Mandatory)
This element carries the transaction group of all the contained
transactions or transaction acknowledgements.

The target application is at liberty to reject any transactions within the
message that do not belong to the stated TransactionGroup.

9.2.5 <Priority> (Optional)
This element allows the sender to indicate their preference in terms of
timeliness of processing for the payload. The three allowable values are

28 September, 2004 Version No: 3.0 Page 62

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

“High”, “Medium” and “Low”. It is left to the discretion of the receiver to
determine whether and how to honour the requested priority.

9.2.6 <SecurityContext> (Optional)
This optional element allows the sender to provide information needed by
the receiver to determine whether or not the sender is authorised to
submit the transactions within the message.

For the Market Settlement And Transfer System (MSATS), this will be
used to hold the participant userid from which the context for transaction
processing is determined.

9.2.7 <Market> (Optional)
This optional element identifies the energy market to which the
transactions in the message belong.

When not provided, a default value of “NEM” will be assumed, indicating
the National Electricity Market.

9.3 <Transactions> SUB-ELEMENT

The purpose of this sub-element is to provide a container for one or more
aseXML transactions. An example is shown below.

<Transactions>

 <Transaction transactionID=”…” transactionDate=”…”
initiatingTransactionID=”…” >

 <NMIDiscoveryResponse version=”r100”>

 …

 </NMIDiscoveryResponse>

 </Transaction>

</Transactions>

Each transaction is contained within a <Transaction> element. This
element carries three attributes.

9.3.1 transactionID (Mandatory)
The generator of each transaction must generate a unique identifier for it,
following the same format rules as the MessageID. There need be no
correlation between MessageIDs and transactionIDs generated by
the same party.

This field is important when correlating response transactions to the
equivalent requests (see section 9.3.3)

28 September, 2004 Version No: 3.0 Page 63

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

It is recommended that Universally Unique Identifiers (see section 1.5
reference 3) be used for transactionIDs where no alternate system
exists.

It should be noted that while Universally Unique Identifiers guarantee
global uniqueness, the transactionID does not need to be globally
unique – it need only be unique to the sender.

Where a transaction is rejected (see chapter 10), a new transactionID
should be allocated when it is resubmitted.

9.3.2 transactionDate (Mandatory)
In a similar vein to the transactionID, the transactionDate follows
the same format as the MessageDate, and is the time at which the
transaction was generated.

9.3.3 initiatingTransactionID (Optional)
Where the transaction is a response to a previous request, the
<Transaction> element must also carry an
initiatingTransactionID attribute, whose value matches that of the
transactionID attribute of the initiating request transaction. The
sender of the request is able to use this attribute to correlate responses
with requests.

The specific aseXML transaction is then carried within the <Transaction>
element. As discussed in section 3.2.8, every aseXML transaction will carry a
version attribute.

9.4 FUTURE ENVELOPE MODIFICATIONS

It is accepted that the aseXML envelope falls far short of other frameworks
currently under development in the international sphere.

In order for initial implementations of aseXML to proceed, however, a
minimum set of functionality is needed to enable participants to rapidly
develop their infrastructure in time for full retail competition.

The final envelope adopted will be dependent to some extent on the transport
framework adopted, and the semantics it provides for recipient information and
transaction context.

28 September, 2004 Version No: 3.0 Page 64

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

9.5 A SAMPLE aseXML MESSAGE

Putting together all the information presented thus far in the document, an
example of an aseXML message is given below.

<ase:aseXML xmls:ase=”urn:aseXML:r100”

 schemaLocation=”urn:aseXML:r100

 http://www.nemmco.com.au/aseXML/schemas/r100/aseXML_r100.xsd”>

 <Header>

 <From context=”NEM”>PARTICIPANT</From>

 <To context=”NEM”>NEMMCO</To>

 <MessageID>1324-52165-123ew</MessageID>

 <MessageDate>2000-10-31T13:20:01.000+10:00</MessageDate>

 <TransactionGroup>NMID</TransactionGroup>

 <Priority>High</Priority>

 <SecurityContext>zz023</SecurityContext>

 <Market>NEM</Market>

 </Header>

 <Transactions>

 <Transaction transactionID=”453-333-23-WED”

 transactionDate=”2000-10-31T13:20:00.900+10:00”

 initiatingTransactionID=”XXX-45-WSHTY-567” >

 <NMIDiscoveryResponse version=”r100”>

 …

 </NMIDiscoveryResponse>

 </Transaction>

 </Transactions>

</aseXML>

28 September, 2004 Version No: 3.0 Page 65

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

10. ACKNOWLEDGEMENT MODEL

10.1 INTRODUCTION

The main purpose of aseXML is to facilitate transaction exchanges. It is by
these exchanges that useful business is conducted. However, in order that
these exchanges can occur in an orderly and traceable way, aseXML also
provides a standard acknowledgement model.

The basic design philosophy for the aseXML acknowledgement model is to
provide the sender with a positive acknowledgement for each aseXML
message, and for each transaction within the message.

With each acknowledgement, the receiver should provide the sender with a
unique identifier, called a receiptID, by which any queries with regard to
message or transaction processing may be resolved. Whilst not currently
specified, the receiptID would form the basis for the ability to electronically
query the progress of a message or transaction.

It is recommended that Universally Unique Identifiers (see section 1.5
reference 3) be used for receiptIDs where no alternate system exists.

The receiptID is not required in the case where the message or transaction
is rejected.

10.2 TRANSACTION EXCHANGES VS TRANSACTION
ACKNOWLEDGEMENTS

Transaction acknowledgements can carry <Event> elements and hence the
designer of a transaction exchange is free to use them as part of the
information exchange between applications. In one sense, transaction
acknowledgements are part of every transaction exchange (50% to be exact!).
However, the aim of aseXML is to allow the transaction exchange designers to
concentrate on the application functionality, without having to “invent” their
own acknowledgment model. Hence acknowledgements are not considered
part of a transaction exchange.

Put another way, where the response to a request is logically accept/reject,
the designer need only define the request transaction and rely on the
transaction acknowledgement to carry the response. Alternatively, where
response data is required that cannot reasonably map to <Event> elements,
or where multiple levels of acknowledgment are required, the designer will
need to define their own response transaction(s).

10.3 MESSAGE ACKNOWLEDGEMENT

There may be considerable delay between the delivery of a message to the
aseXML gateway and the processing of the transactions within it by

28 September, 2004 Version No: 3.0 Page 66

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

application systems. The delay is typically a result of process scheduling
decisions by the receiver.

In order that the sender receive timely acknowledgement of message
delivery, the receiver should respond immediately to each aseXML
message with a message acknowledgement.

An example of a message acknowledgement is given below, with each
attribute described in subsequent sections.

<MessageAcknowledgement

 initiatingMessageID=”…”

 receiptID=”…”

 receiptDate=”…”

 status=”Accept”

 duplicate=”No”/>

10.3.1 initatingMessageID (Mandatory)
The value of this attribute corresponds to the value of the <MessageID>
element in the header of the message being acknowledged.

10.3.2 receiptID (Optional)
The receiptID is a unique identifier, assigned by the receiver of a
message, to identify the processing they intend to perform as a result of
receiving it. It does not need to be provided in the case where the
message is rejected (see section 10.3.4).

10.3.3 receiptDate (Mandatory)
This attribute indicates the date and time at which the message was
queued for processing. If the message is rejected, it indicates the date
and time at which the rejection occurred.

10.3.4 status (Mandatory)
There are two possible values for this attribute, “Accept” or “Reject”.

“Accept” indicates the message is accepted with no fatal errors detected.

“Reject” indicates the message was rejected. The receiver will perform no
further processing on the contained transactions. The acknowledgement
should carry at least one event with a severity of “Fatal”.

In the case of “Reject”, the message acknowledgement will contain
one or more <Event> elements (see chapter 11) detailing the errors
detected in the message. Examples might include schema validation
errors.

28 September, 2004 Version No: 3.0 Page 67

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

10.3.5 duplicate (Optional)
There are two possible values for this attribute, “Yes” or “No”, the default
being “No”.

When this attribute is set to “Yes”, this indicates that the receiver believes
it has already processed the message and returned an
acknowledgement.

It is not an error to receive a previously unseen acknowledgement that
has this attribute set to “Yes”. The acknowledgment receiver may ignore
the attribute. It is provided largely for logging and fault finding.

See section 10.6 for more details regarding handling duplicate messages.

10.4 TRANSACTION ACKNOWLEDGEMENT

For every transaction, a transaction acknowledgement must be sent to
the originator.

The purpose of the acknowledgement is to provide the originator with an
indication of the necessary information to track the progress of the request.

An example of a transaction acknowledgement is given below, with each
attribute described in subsequent sections.

<TransactionAcknowledgement

 initiatingTransactionID=”…”

 receiptID=”…”

 receiptDate=”…”

 status=”Partial”

 duplicate=”No”

 acceptedCount=”20”/>

10.4.1 initatingTransactionID (Mandatory)
The value of this attribute corresponds to the value of the
transactionID attribute on the container element for the transaction.

10.4.2 receiptID (Optional)
The receiptID is an identifier, assigned by the receiver of a transaction,
to identify the processing they intend to perform as a result of receiving it.
It does not need to be provided in the case where the transaction is
rejected.

28 September, 2004 Version No: 3.0 Page 68

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

10.4.3 receiptDate (Mandatory)
This attribute indicates the date and time at which the transaction was
queued for processing. If the transaction is rejected, it indicates the date
and time at which the rejection occurred.

10.4.4 status (Mandatory)
There are three possible values for this attribute, “Accept”, “Partial” or
“Reject”.

“Accept” indicates the transaction is accepted with no errors detected.
The acknowledgement may carry ”Informational” or “Warning” events.

“Partial” indicates that the transaction will be processed but portions of it
were in error and will be ignored. An example of this might be meter data
records. The acknowledgement may carry events with any severity level
except “Fatal”.

“Reject” indicates the transaction was rejected. The receiver will perform
no further processing of the transaction. In the case of a request
transaction, no response transactions, where normally expected, will be
generated. The acknowledgement should carry at least one event with a
severity of “Fatal”.

In the case of “Partial” and “Reject”, the transaction
acknowledgement will contain one or more <Event> elements (see
chapter 11) detailing the errors detected in the message. Examples
would include missing data or invalid data.

Where the transaction is not supported, a status of “Reject” will be
used, with the <Event> element indicating this error condition.

Where the receiver does not support the version of the transaction,
a status of “Reject” will be used, with the <Event> element
indicating the versions of the transaction supported by the receiver.

10.4.5 duplicate (Optional)
There are two possible values for this attribute, “Yes” or “No”, the default
being “No”.

When this attribute is set to “Yes”, this indicates that the receiver believes
it has already processed the transaction and returned an
acknowledgement.It is not an error to receive a previously unseen
acknowledgement that has this attribute set to “Yes”. The
acknowledgment receiver may ignore the attribute. It is provided largely
for logging and faultfinding.

See section 10.6 for more details regarding handling of duplicate
transactions.

28 September, 2004 Version No: 3.0 Page 69

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

10.4.6 acceptedCount (Optional)
Where the transaction contains multiple entries that are processed
simultaneously, this attribute may be used to indicate the number of
entries that were accepted. Typically, events will be provided to indicate
any entries that were not accepted.

The major use of this attribute is where the transaction carries CSV
format data (see chapter 13).

10.5 EXCHANGING ACKNOWLEDGEMENTS

All message and transaction acknowledgments will be carried in an
aseXML message within a payload element of <Acknowledgements>.

Messages with an <Acknowledgements> payload containing message
acknowledgements will not themselves be acknowledged.

Multiple acknowledgements of both types may be carried in a single
payload, with those for messages preceding those for transactions.

Note that where both message and transaction acknowledgements are carried
together, the previous paragraphs imply that no corresponding message
acknowledgement will be generated. If tracking of the delivery of transaction
acknowledgments is considered important, they should be transferred using
separate acknowledgement messages.

Where transaction acknowledgements are carried, they will all
correspond to transactions of the same <TransactionGroup>. The
TransactionGroup value will be included in the header, consistent will its
use for the corresponding transactions.

Where only message acknowledgements are carried, a
<TransactionGroup> of “MSGS” will be used.

The aseXML acknowledgement model allows for multiple messages to be
acknowledged via a single acknowledgment message. Similarly, transactions
from multiple messages could be acknowledged together, provided the rules
for TransactionGroup of the acknowledgement message are not violated.

Whilst grouping acknowledgements may lead to better use of transport
bandwidth, it is a matter for the binding to a particular transport to decide
whether this is permitted.

10.6 HANDLING DUPLICATES

If a sender believes that a message or transaction was not received by the
intended target, they may resend the message or transaction. This can result
in duplicate messages/transactions being received.

The recipient of a duplicate message/transaction should carry out the following
on receipt:

• if the receiver has not already generated and returned an
acknowledgment, the assumption is that the original message/

28 September, 2004 Version No: 3.0 Page 70

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

transaction has not yet completed internal processing. In this instance
the receiver should not process the duplicate further, as the original
acknowledgment will eventually be sent to respond to the transaction.
All duplicates received whilst generating the original acknowledgment
should not in turn be acknowledged, as the original acknowledgment
will complete the transaction/acknowledgment cycle.

• any duplicate transactions received after the original ack has been sent
must assume the original acknowledgment was lost in transit. On
receipt the recipient must send an acknowledgment with the same
receiptID and status as the original acknowledgement, but with the
duplicate attribute set to “Yes”. The acknowledgement date should
reflect the date/time at which the second acknowledgement was
generated.

28 September, 2004 Version No: 3.0 Page 71

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

10.7 A SAMPLE aseXML TRANSACTION EXCHANGE

The diagram below provides an example of a transaction exchange between a
(S)ender and a (R)eceiver. Each line represents an aseXML message, with
some elements and attributes omitted for clarity.

H() indicates the contents of the message header, whilst T() and A() represent
the <Transactions> and <Acknowledgements> payload elements.

The diagram shows the sender generating a message containing three
transactions (1). The message (2) and then the transactions (3) are
acknowledged by the receiver. The sender acknowledges the transaction
acknowledgment message (4). The receiver then generates a response
transaction (5) to the first of the three in the initial message. This response
message (6), then the transaction (7) it contains are acknowledged. The
receiver then acknowledges the transaction acknowledgement message (8).

 “m=” refers to a <MessageID> element value.
“im=” refers to a initiatingMessageID attribute value.
“t=” refers to a transactionID attribute value.
“it=” refers to a initiatingTransactionID attribute value.
“r=” refers to a receiptID attribute value.
“g=” refers to a <TransactionGroup> element value.

28 September, 2004

H(m=R2, g=xxx) A(it=56 r=300, it=57 r=301, it=58 r=302) (3)
H(m=R1, g=MSGS) A(im=S1 r=95) (2)

H(m=R3, g=xxx) T(t=405 it=56) (5)

H(m=S3, g=MSGS) A(im=R3, r=1124) (6)
H(m=S1, g=xxx) T(t=56, t=57, t=58) (1)

H(m=S4, g=xxx) A(it=405 r=4567) (7)
SENDER

Version No: 3.0

DRAFT
RECEIVER
H(m=S2, g=MSGS) A(im=R2, r=1123) (4)
H(m=R4, g=MSGS) A(im=S4 r=96) (8)
Page 72

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

11. ERROR REPORTING AND THE <Event> ELEMENT

Error reporting is an important function of message and transaction
acknowledgements. Errors will also need to be reported in response transactions.
In order for errors to be reported consistently, aseXML defines a standard
<Event> element for this purpose.

Zero, one or more <Event> elements are supported within a
<MessageAcknowledgement> or a <TransactionAcknowledgement>
element.

It is up to the designer of a transaction exchange to decide how to incorporate
application error reporting. In general, a response transaction should support
content incorporating the normal response and <Event> elements.

The example event element below indicates that a schema error has occurred.
Subsequent sections describe the attributes and elements of the <Event>
element.

<Event class=”Message” severity=”Fatal”>

 <Code>2</Code>

 <KeyInfo>Line number or other info</KeyInfo>

 <Context>The contents around the error<Context>

 <Explanation>Further text describing the error</Explanation>

</Event>

11.1 class ATTRIBUTE (Optional)

All events fall into one of the following classes.

• Message

The message class covers validation of the aseXML message
structure. Examples of errors at this level include inconsistent header
elements, unsupported transactions and unsupported transaction
versions.

• Application (default)

This class covers application level validation. Events of this class will
normally only appear in <TransactionAcknowledgement>
elements or in response transactions.

28 September, 2004 Version No: 3.0 Page 73

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

• Processing

The processing class covers environmental issues. An example might
be the long-term unavailability of target applications or the corruption of
a database.

11.2 severity ATTRIBUTE (Optional)

The severity attribute indicates the nature of the event, and takes one of the
following values.

• Information

Processing is unaffected by the contents of the event. It is provided for
general interest. In the absence of any other circumstances, this
severity attribute should be used for a code of 0 (see section 11.8).

• Warning

Processing may proceed by application of overriding processing rules.
An example might be substitution of a default value for a missing
optional element.

• Error

An error is present that must be corrected. Processing may still
continue. An example might be an invalid meter data record that is
unrelated to the remainder of the records presented for processing.

• Fatal (default)

The nature of the error is such that further processing is not possible.

11.3 <Code> SUB-ELEMENT (Mandatory)

This element is a numeric code corresponding to the particular event
condition. Values from 0 to 999 are reserved for definition by the aseXML
standard. The intention is to provide a common set of values covering most
situations, allowing consistent interpretation of codes. The currently defined
list is shown in section 11.8. Where the code is not in the reserved range, a
description attribute should also be provided according to the guidelines in
section 2.5.

28 September, 2004 Version No: 3.0 Page 74

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

The following table defines the ranges of codes currently allocated within
aseXML.

Use Range

aseXML Reserved 0-999

National Electricity Market 1000-1999

New South Wales Gas Market 2000-2999

Victorian Gas Market 3000-3999

Faults 4000-4099

11.4 <KeyInfo> SUB-ELEMENT (Optional)

Where the combination of class and code are insufficient to completely
describe an event, this element may be used to provide further detail as to the
information needed to locate the source of the event within the original
transaction.

For CSV data carried as the content of an element, the value of the
<KeyInfo> field should be the key column values for the line in error,
separated by commas if necessary.

11.5 <Context> SUB-ELEMENT (Optional)

This element should contain the portion of the input to which the event applies.

28 September, 2004 Version No: 3.0 Page 75

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

11.6 <Explanation> SUB-ELEMENT (Optional)

Where the code used is of a generic nature, and further explanation is
required, this information should be provided via this element.

Another example of an event is provided below, in this case of an event
generated for an unknown transaction version.

<Event class=”Message” severity=”Fatal”>

 <Code>4</Code>

 <SupportedVersions>

 <Version>r90</Version>

 <Version>r95</Version>

 </SupportedVersions>

</Event>

11.7 <SupportedVersions> SUB-ELEMENT (Optional)

Where the condition of an unsupported transaction version is indicated, the
event should include the <SupportedVersions> element. It indicates the
versions of the transaction that are supported by the receiver via one or more
<Version> sub-elements.

28 September, 2004 Version No: 3.0 Page 76

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

11.8 Reserved Event Codes

Class Code Description Notes

 0 Success, OK, Accepted,
etc. Any class

Message

(1-99)
1 Not well formed

 2 Schema validation failure

 3 Transaction not supported
within Transaction Group

The transaction is not
supported by the receiving
system in the context of the
provided transaction group

 4 Transaction version not
supported

 5 Uncompression failure

This covers both errors in
the uncompress ion process
and the absence of the
appropriate file within the
compressed format
container

 6 Message too big

 7 Header mismatch

Information provided by
transport layer is
inconsistent with the
message header

 8 Incorrect market

The system to which the
message is addressed does
not handle the market
indicated in the header

 9 Unknown Transaction
Group

The transaction group is not
supported by the receiving
system

28 September, 2004 Version No: 3.0 Page 77

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

Processing

(100-199)
100 Application unavailable

 101 Database data error

Typically the result of code
error, such as insufficient
checking of data validity
prior to insertion into the
database.

 102 Database system error e.g. major database
problem

Application

(200-998)
200 Record(s) not found

 201 Data missing

 202 Data invalid

 203 Unknown report
Requested report not
supported by receiving
system

 204 Missing or invalid report
parameters

 205 Unknown Table
Requested table is not
replicated by the receiving
system

 206 Unknown initiating
Transaction ID

We didn’t send this
transaction – no record of
initiating transaction ID.
Therefore the response
transaction does not belong
to us.

999 Unexpected Error Any Class

Must be accompanied by an
<Explanation> element

Only to be used where an
error can’t reasonably be
mapped to an existing error
code optionally carrying an
<Explanation> element to
further explain the specific

28 September, 2004 Version No: 3.0 Page 78

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

nature of the error

28 September, 2004 Version No: 3.0 Page 79

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

12. GENERIC TRANSACTION EXCHANGES

Some transaction exchanges lend themselves to be used within more than one
TransactionGroup, for instance reports. aseXML allows a transaction exchange to
be supported within more than one TransactionGroup (see section 1.7).

Depending on the way these “generic” transactions are designed, they can be
extended to accommodate use in new TransactionGroups without affecting their
basic structure. Typically this involves designing the transaction on the basis of
one or more abstract types, and developing derived types specific to each
TransactionGroup that wishes to use the transaction.

12.1 TABLE REPLICATION

Section 2.5 allows for descriptions to be omitted on codes in the event that
“mechanisms are in place for the exchange between businesses of the
code/description mapping information”. Table replication provides such a
“mechanism”. Whilst initially designed for low volume applications such as
codes, it is sufficiently generic to allow replication of arbitrary amounts of any
information that can be expressed as a table.

The “table” paradigm is borrowed from the relational world, and represents
data as a series of fixed format rows within a table. The table should be
considered as a logical entity, and need not have a physical representation
(though it more than likely will) within the providing system.

Once created, a row can only be subsequently updated once, and then only to
indicate that it has been superceded by another row. A logical update is
achieved by creating a new row with identical data except for those columns
that have changed.

All rows thus carry a CreationDate indicating the date/time at which they
were created, and a MaintenanceDate indicating the date/time at which
they were superceded. In addition, the status field initially starts with a value of
“A” for active, and is replaced with an “I” for Inactive when the row is
superceded.

A system providing table data may place a limit on the number of rows
returned by any one request. In order that the remaining rows can be
retrieved, every row carries a non-zero integer sequence number. A sequence
number is provided with the request, meaning that only rows with a greater
sequence number should be returned. Returned data should also be sorted by
sequence number. As a result, a table can be provided in “chunks” by
providing a sequence number of zero on the initial request, and repeating the
request with the maximum sequence number from the output of the previous
request, until such time as no further rows are returned.

The table replication request transaction allows the provision of a table name,
date range and sequence number. The date range selects only those rows
whose creation or maintenance date falls inclusively within the specified
range. A low date of 2001-01-01 and a high date of 9999-12-31 should be
used where the date range is not relevant.

28 September, 2004 Version No: 3.0 Page 80

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

The table replication notification transaction is based on an abstract table type.
Specific types for tables within a TransactionGroup are then derived from this
base type. Note that these specific types may be used across
TransactionGroups as appropriate.

The term notification rather than response is used because systems may
choose to notify others of incremental changes to tables asynchronously.
Whilst only one table at a time may be selected in a replication request, the
notification transaction allows the inclusion of data from multiple tables, each
being held within a ReplicationBlock. Instances indicate via an xsi:type
attribute the specific table types being provided.

An example of a replication request transaction is shown below.

<ReplicationRequest version="r5">

 <ReplicationParameters>

 <TableName>DistributionLossFactorCodes</TableName>

 <CreationFromDate>2000-01-
01T00:00:00.000+10:00</CreationFromDate>

 <CreationToDate>9999-12-
31T00:00:00.000+10:00</CreationToDate>

 <LastSequenceNumber>0</LastSequenceNumber>

 </ReplicationParameters>

</ReplicationRequest>

28 September, 2004 Version No: 3.0 Page 81

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

12.2 REPORTS

The report transaction exchange uses two abstract types, one for report
parameters and one for the format of the resulting report. Instances indicate
via an xsi:type attribute the specific type used for the provision of
parameters and the resulting output format.

As a minimum, all report parameter types must include the name of the report
required. Note that multiple reports may use the same report parameter type
in the event that the input parameters are identical. In this case, only the
report name will vary.

A copy of the parameters is provided with the resulting report.

Two standard report format types are provided for CSV style output, or output
in the same format as used in the ReplicationNotification transaction.

An example of a report request transaction is shown below.

<ReportRequest version=”r5”>

<ReportParameters

 xsi:type="ase:CATSStatisticsReportParameters">

 <ReportName>Statistics</ReportName>

 <FromDate>2000-01-01</FromDate>

 <ToDate>9999-01-01</ToDate>

 <Public>Yes</Public>

 </ReportParameters>

</ReportRequest>

28 September, 2004 Version No: 3.0 Page 82

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

13. SUPPORT FOR CSV FORMAT DATA

For high volume, repetitive data, it may be considered appropriate for this to be
carried in CSV format within a transaction element.

13.1 FORMAT CONSTRAINTS

Data within a given column of the CSV data should have the same meaning
for ALL lines. CSV format data utilising a pseudo-tagged structure, whereby
particular lines or columns are used to interpret the meaning of other lines or
columns, is NOT supported by aseXML.

The first line of any CSV data should consist of column designators. The
purpose of the designators is twofold;

• Column interpretation is able to be position independent.

Applications processing the CSV data must utilise the designators to
determine the column meaning, and should NOT assume the columns
will always be delivered in a fixed order.

• Products such as Microsoft Excel or Oracle SQL*Loader can utilise the
column designators to more usefully process the subsequent data
lines.

13.2 LINE TERMINATOR

The ASCII carriage return character should be used to indicate the end of
each line of CSV data. The last line may be terminated by the enclosing tag
and need not end with a carriage return.

To allow for flexibility in terms of the tools used to manipulate CSV data, any
line feed characters present at the start of a line of CSV data should be
removed prior to processing of the line.

Thus a line ending in a carriage return/line feed pair would result in the line
being terminated by the carriage return, the line feed appearing at the start of
the next line, and this line feed character then being stripped from the
subsequent line prior to it being processed.

28 September, 2004 Version No: 3.0 Page 83

 DRAFT

Guidelines for Development of A Standard for Energy Transactions in XML (aseXML)

14. ACCESSING aseXML SCHEMAS AND INSTANCE DOCUMENT
EXAMPLES

The schemas and example messages/transactions for each version of aseXML
are accessible via www.aseXML.com.

15. MESSAGE SERVICES

Messaging services used to deliver aseXML instance documents are discussed in
this section.

15.1 AseXML FTP hokey-pokey protocol

This protocol is detailed in the section “8.3 Managing Files” in the document
“010905 - Technical Architecture Design Report v4.4.pdf”.

15.2 Using aseXML with ebXML messaging service

The Victorian Gas market uses ebXML Message Service binding with HTTP to
deliver aseXML message as attachments as defined in the “FRC B2B System
Specifications v1-6.doc”.

15.3 AseXML binding with SMTP

This is a secondary means for delivering aseXML messages over SMTP, i.e.
via the email. As defined in the “SMTP Binding to aseXML Specification
v0.7.doc”.

28 September, 2004 Version No: 3.0 Page 84

 DRAFT

http://www.asexml.com/

	INTRODUCTION
	BACKGROUND
	APPROACHES TO STANDARD DEVELOPMENT
	DOCUMENT PURPOSE
	TARGET AUDIENCE
	REFERENCE DOCUMENTATION
	FORMATTING CONVENTIONS
	aseXML CONCEPTUAL MODEL AND TERMINOLOGY
	DOCUMENT STRUCTURE
	REVISION HISTORY

	GENERAL
	DTDs VS SCHEMAS
	USE OF SCHEMA VALIDATING PARSERS
	ELEMENTS VS ATTRIBUTES
	USE OF ENUMERATIONS
	CODES VS DESCRIPTIONS
	USE OF LINE TERMINATORS
	THE SPIRIT OF aseXML
	CONTAINER ELEMENTS FOR REPEATED ELEMENTS
	MAINTAINING ELEMENT ORDER

	VERSION CONTROL
	XML AND VERSIONING
	Options For Adding Version Information To XML
	Namespaces
	Namespace Granularity
	XML Schemas

	aseXML AND VERSIONING
	Guiding Principles
	Role Of Versioning
	Adding Version Information
	Namespaces
	Release Identifiers
	Schemas
	Version Attributes
	Selecting Elements To Version
	“Backwards compatible” changes

	USING DEVELOPMENT IDENTIFIERS
	Scenario
	Sequence of Events

	ARCHITECTURE IMPLICATIONS OF aseXML RELEASE MIGRATIONS
	Accepting aseXML Messages
	Producing aseXML Messages
	Minimising Code Branches
	Release Example

	aseXML VERSIONING STEP BY STEP
	The Initial Message
	The Content Model Changes For An Isolated Element
	The Content Model Changes For A Shared Element
	The Content Model Changes For A Shared Element (2)
	The Structure Changes For A Shared Concrete Type
	The Optionality Of An Element is Changed
	Version Attribute Added

	NAMESPACES
	aseXML NAMESPACE FORMAT
	DEFAULT NAMESPACES
	NAMESPACE PREFIXES

	SCHEMA ORGANISATION
	SCHEMALOCATION URLs
	TRANSACTION FILES
	SCHEMA INCLUSION
	COMMON SCHEMAS
	ELEMENTS/TYPES
	TRANSACTION ELEMENTS
	ATTRIBUTES

	SCHEMA FEATURES
	XML DECLARATION
	ANONYMOUS vs NAMED TYPES AND DATA DICTIONARIES
	ANNOTATIONS
	SIMPLE TYPES
	HANDLING FUEL SPECIFIC VARIATIONS
	aseXML ATTRIBUTES
	Default Values
	ID And IDREF

	ELEMENT AND ATTRIBUTE QUALIFICATION

	INSTANCE DOCUMENTS
	XML DECLARATION
	DEFAULT NAMESPACES
	SCHEMALOCATION ATTRIBUTE
	DECLARING NAMESPACES FROM THE XML STANDARDS

	TRANSPORT, ENVELOPE OR TRANSACTION
	TRANSPORT
	ENVELOPE
	TRANSACTION

	ENVELOPE
	INTRODUCTION
	<Header> SUB-ELEMENT
	<From>, <To> (Mandatory)
	<MessageID> (Mandatory)
	<MessageDate> (Mandatory)
	<TransactionGroup> (Mandatory)
	<Priority> (Optional)
	<SecurityContext> (Optional)
	<Market> (Optional)

	<Transactions> SUB-ELEMENT
	transactionID (Mandatory)
	transactionDate (Mandatory)
	initiatingTransactionID (Optional)

	FUTURE ENVELOPE MODIFICATIONS
	A SAMPLE aseXML MESSAGE

	ACKNOWLEDGEMENT MODEL
	INTRODUCTION
	TRANSACTION EXCHANGES VS TRANSACTION ACKNOWLEDGEMENTS
	MESSAGE ACKNOWLEDGEMENT
	initatingMessageID (Mandatory)
	receiptID (Optional)
	receiptDate (Mandatory)
	status (Mandatory)
	duplicate (Optional)

	TRANSACTION ACKNOWLEDGEMENT
	initatingTransactionID (Mandatory)
	receiptID (Optional)
	receiptDate (Mandatory)
	status (Mandatory)
	duplicate (Optional)
	acceptedCount (Optional)

	EXCHANGING ACKNOWLEDGEMENTS
	HANDLING DUPLICATES
	A SAMPLE aseXML TRANSACTION EXCHANGE

	ERROR REPORTING AND THE <Event> ELEMENT
	class ATTRIBUTE (Optional)
	severity ATTRIBUTE (Optional)
	<Code> SUB-ELEMENT (Mandatory)
	<KeyInfo> SUB-ELEMENT (Optional)
	<Context> SUB-ELEMENT (Optional)
	<Explanation> SUB-ELEMENT (Optional)
	<SupportedVersions> SUB-ELEMENT (Optional)
	Reserved Event Codes

	GENERIC TRANSACTION EXCHANGES
	TABLE REPLICATION
	REPORTS

	SUPPORT FOR CSV FORMAT DATA
	FORMAT CONSTRAINTS
	LINE TERMINATOR

	ACCESSING aseXML SCHEMAS AND INSTANCE DOCUMENT EXAMPLES
	MESSAGE SERVICES
	AseXML FTP hokey-pokey protocol
	Using aseXML with ebXML messaging service
	AseXML binding with SMTP

