GAS STATEMENT OF OPPORTUNITIES

ATTACHMENT B: VICTORIAN GAS PLANNING REVIEW 2015

FOR EASTERN AND SOUTH-EASTERN AUSTRALIA

Published: April 2015

IMPORTANT NOTICE

Purpose

AEMO has prepared this document in accordance with Rule 323 of the National Gas Rules, as an attachment to the 2015 Gas Statement of Opportunities (GSOO). It contains data and charts previously published as the Victorian Gas Planning Report (VGPR). This publication is based on information available to AEMO as at 31 December 2014.

In March 2014, the Australian Energy Market Commission (AEMC) approved Rule Changes that align publication of both the GSOO and VGPR to 31 March from 2015. This change improves consistency between the reports, removes duplicated effort, and allows AEMO to utilise the most recent winter demand trends in both reports.

Disclaimer

This document or the information in it may be subsequently updated or amended. This document does not constitute legal or business advice, and must not be relied on as a substitute for obtaining detailed advice about the National Gas Law, the National Gas Rules, or any other applicable laws, procedures or policies. AEMO has made every effort to ensure the quality of the information in this document but cannot guarantee its accuracy or completeness.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this document:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability
 or completeness of the information in this document; and
- are not liable (whether by reason of negligence or otherwise) for any statements or representations in this document, or any omissions from it, or for any use or reliance on the information in it.

© 2015. The material in this publication may be used in accordance with the copyright permissions on AEMO's website.

www.aemo.com.au info@aemo.com.au

CONTENTS

IMPORTANT I	NOTICE	ii
INTRODUCTIO	NC	3
CHAPTER 1.	DEMAND FORECAST	4
CHAPTER 2.	SUPPLY FORECAST	8
CHAPTER 3.	CAPACITY INFORMATION	10
CHAPTER 4.	ADEQUACY ASSESSMENT	14
CHAPTER 5.	IMPACT FROM GPG DEMAND	17
CHAPTER 6.	COMMITTED EXPANSIONS AND	
	EXTENSIONS	19
MEASURES A	ND ABBREVIATIONS	20
Units of measure Abbreviations		20 20
GLOSSARY		21

TABLES

Table 1	Annual system consumption forecasts excluding GPG (PJ)	4
Table 2	Annual system consumption forecasts by SWZ (PJ/yr)	4
Table 3	Annual DTS-connected GPG consumption forecasts by SWZ (PJ/yr)	4
Table 4	Monthly system consumption forecasts for January – December 2015 (PJ)	4
Table 5	Monthly system consumption forecasts by SWZ for 2015 (PJ)	5
Table 6	Monthly DTS-connected GPG consumption forecasts by SWZ for 2015 (TJ)	5
Table 7	Winter maximum system demand forecast, medium scenario (TJ/d)	5
Table 8	Winter 1-in-2 maximum system demand forecast by SWZ (TJ/d)	5
Table 9	Winter 1-in-20 maximum system demand forecast by SWZ (TJ/d)	6
Table 10	Maximum hour system demand forecast by SWZ (TJ/hr)	6
Table 11	Monthly peak day system demand forecasts for January–December 2015 (TJ/d)	6
Table 12	Monthly 1-in-2 peak day demand forecasts by SWZ for 2015 (TJ/d)	6
Table 13	Monthly 1-in-20 peak day demand forecasts by SWZ for 2015 (TJ/d)	7
Table 14	Monthly maximum hour system demand forecasts by SWZ for 2015 (TJ/h)	7
Table 15	Annual supply forecast by SWZ and injection point/or aggregated injection points (PJ/yr)	8
Table 16	Peak day supply forecast by SWZ and injection point (TJ/d)	8
Table 17	Available monthly peak day gas supply forecast, January to December 2015 (TJ/d)	9

ATTACHMENT B: VICTORIAN GAS PLANNING REVIEW 2015

Table 18	Dandenong LNG facility capacity and operating parameters	9
Table 19	Iona UGS capacity and operating parameters	9
Table 20	Culcairn export capacity based on forecasted 1-in-20 demand (TJ/d)	12
Table 21	Peak day supply-demand outlook	14
Table 22	Monthly supply-demand outlook for 2015	15
Table 23	DTS capacity adequacy by SWZ	16
Table 24	Committed expansions and extensions of the DTS	19

FIGURES

ALLIN

Figure 1	System Withdrawal Zones (SWZ)	3
Figure 2	DTS system capacity to supply demand between Longford and Iona	10
Figure 3	SWP capacity with varying system demand days	10
Figure 4	SWP capacity with varying Iona pressure	11
Figure 5	Withdrawals at Iona as a function of system demand	11
Figure 6	Imports from New South Wales through Culcairn	12
Figure 7	Exports to New South Wales at 5,850 kPa minimum modelled pressure at Culcairn	12
Figure 8	Impact of Northern Zone local demand on Culcairn export capacity	13
Figure 9	Western Transmission System injections and Iona pressures	13
Figure 10	Annual supply forecast compared with annual system demand plus DTS-connected	
	GPG demand forecast	14
Figure 11	Peak day supply forecast compared with scenario demand	15
Figure 12	System linepack without unscheduled GPG demand	17
Figure 13	Impact of unscheduled GPG demand on system linepack	17
Figure 14	Relationship between scheduled GPG demand, system demand, and curtailment limits	18

INTRODUCTION

AEMO has published planning assumptions and methodology separately on the AEMO website, in a document called Victorian Gas Planning Approach¹.

As a reference for readers, Figure 1 is a schematic of Victoria's Declared Transmission System.

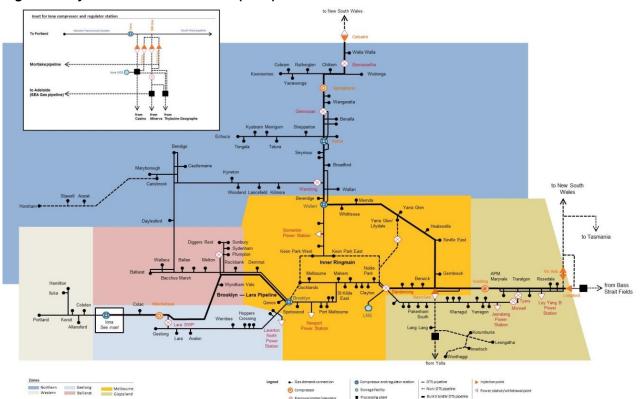


Figure 1 System Withdrawal Zones (SWZ)

¹ Available: http://www.aemo.com.au/Electricity/Planning/Related-Information/Planning-Assumptions.

CHAPTER 1. DEMAND FORECAST

Table 1 Annual system consumption forecasts excluding GPG (PJ)

	2015	2016	2017	2018	2019					
System consumption	191.7	194.6	192.9	191.7	189.3					
System consumption forecast by market segment										
Residential and commercial ²	121.1	121.9	122.9	123.7	124.0					
Industrial	70.6	72.7	70.0	68.0	65.3					

Table 2 Annual system consumption forecasts by SWZ (PJ/yr)

	2015	2016	2017	2018	2019
Ballarat	8.7	8.8	8.9	9.0	9.0
Geelong	22.3	23.2	22.8	22.8	22.8
Gippsland	14.9	15.1	12.5	11.3	9.4
Melbourne	124.1	125.3	126.0	125.8	125.4
Northern	17.4	17.7	17.9	18.0	18.0
Western	4.4	4.5	4.7	4.7	4.8
Total system consumption	191.7	194.6	192.9	191.7	189.3

Table 3 Annual DTS-connected GPG consumption forecasts by SWZ (PJ/yr)

	2015	2016	2017	2018	2019
Ballarat	-	-	-	-	-
Geelong	0.06	0.06	0.11	0.22	0.15
Gippsland	0.00	0.01	0.01	0.02	0.02
Melbourne	0.25	0.24	0.29	0.49	0.34
Northern	-	-	-	-	-
Western	-	-	-	-	-
Total DTS-connected GPG consumption	0.30	0.31	0.41	0.74	0.51

Table 4 Monthly system consumption forecasts for January – December 2015 (PJ)

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
System consumption	9.0	8.9	10.4	13.0	20.1	24.5	26.3	24.1	18.6	15.4	11.6	9.8

² Distribution loss forecasts added to the residential and commercial forecast component.

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Ballarat	0.3	0.3	0.4	0.6	1.0	1.2	1.4	1.2	0.9	0.7	0.5	0.3
Geelong	1.4	1.3	1.4	1.6	2.2	2.5	2.6	2.4	2.0	1.8	1.5	1.4
Gippsland	0.9	0.8	1.0	1.1	1.4	1.6	1.7	1.6	1.4	1.3	1.1	1.0
Melbourne	5.3	5.2	6.3	8.2	13.4	16.7	17.8	16.2	12.1	9.8	7.1	5.9
Northern	0.8	0.9	1.1	1.2	1.8	2.1	2.3	2.2	1.7	1.4	1.0	0.8
Western	0.3	0.3	0.3	0.3	0.3	0.4	0.5	0.5	0.4	0.4	0.4	0.3
System consumption	9.0	8.9	10.4	13.0	20.1	24.5	26.3	24.1	18.6	15.4	11.6	9.8

Table 5 Monthly system consumption forecasts by SWZ for 2015 (PJ)

Table 6 Monthly DTS-connected GPG consumption forecasts by SWZ for 2015 (TJ)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Ballarat	-	-	-	-	-	-	-	-	-	-	-	-
Geelong	6	10	0	0	22	0	19	0	0	0	0	0
Gippsland	0	0	0	0	2	0	0	0	0	0	0	0
Melbourne	31	43	12	12	50	12	20	14	13	13	12	13
Northern	-	-	-	-	-	-	-	-	-	-	-	-
Western	-	-	-	-	-	-	-	-	-	-	-	-
Total GPG	38	53	12	12	74	12	39	14	13	13	12	13

Table 7 Winter maximum system demand forecast³, medium scenario (TJ/d)

	2015	2016	2017	2018	2019
1-in-2	1,126	1,134	1,130	1,124	1,115
1-in-20	1,248	1,257	1,252	1,246	1,238

Table 8 Winter 1-in-2 maximum system demand forecast by SWZ (TJ/d)

	2015	2016	2017	2018	2019
Ballarat	61	61	62	62	62
Geelong	114	112	111	111	111
Gippsland	71	70	62	58	52
Melbourne	761	772	775	772	770
Northern	100	101	102	102	102
Western	18	18	18	18	18
System demand	1,126	1,134	1,130	1,124	1,115

³ The maximum system demand forecast does not include GPG demand, export demand to Culcairn and transmission system use gas.

	2015	2016	2017	2018	2019
Ballarat	68	68	68	69	69
Geelong	123	126	125	125	125
Gippsland	76	77	68	64	58
Melbourne	853	855	858	855	853
Northern	110	112	113	113	113
Western	19	19	20	20	20
System demand	1,248	1,257	1,252	1,246	1,238

Table 9 Winter 1-in-20 maximum system demand forecast by SWZ (TJ/d)

Table 10 Maximum hour system demand forecast by SWZ (TJ/hr)

		2015	2016	2017	2018	2019
1-in-2 peak	Ballarat	4.2	4.3	4.3	4.3	4.3
hour	Geelong	6.8	6.7	6.7	6.7	6.7
	Gippsland	4.2	4.1	3.7	3.5	3.1
	Melbourne	51.9	52.6	52.8	52.6	52.5
	Northern	6.5	6.6	6.6	6.7	6.6
	Western	1.0	1.0	1.0	1.1	1.1
	System demand	74.4	74.9	74.6	74.	73.7
1-in-20 peak	Ballarat	4.7	4.7	4.8	4.8	4.8
hour	Geelong	7.4	7.5	7.5	7.5	7.5
	Gippsland	4.5	4.5	4.0	3.8	3.4
	Melbourne	58.1	58.3	58.5	58.3	58.1
	Northern	7.2	7.3	7.4	7.4	7.4
	Western	1.1	1.1	1.2	1.2	1.2
	System demand	82.5	83.0	82.7	82.4	81.8

Note: it is not appropriate to add up peak hour demand for each SWZ because all SWZs are not expected to coincide.

Table 11 Monthly peak day system demand forecasts for January–December 2015 (TJ/d)

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep⁴	Oct	Nov	Dec
1-in-2	394	416	496	668	878	1,126	1,126	1,126	1,126	792	657	512
1-in-20	475	539	657	835	1,055	1,248	1,248	1,248	1,248	953	824	678

Table 12 Monthly 1-in-2 peak day demand forecasts by SWZ for 2015 (TJ/d)

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep⁵	Oct	Nov	Dec
Ballarat	19	21	25	35	47	61	61	61	61	42	34	26
Geelong	64	65	71	83	97	114	114	114	114	91	82	72
Gippsland	44	45	48	54	62	71	71	71	71	59	54	48
Melbourne	213	228	289	418	575	762	762	762	762	511	410	302
Northern	43	44	51	64	81	100	100	100	100	74	63	52
Western	11	12	12	14	16	18	18	18	18	15	14	12
System demand	394	415	496	668	878	1,126	1,126	1,126	1,126	792	657	512

4 Historically, maximum system demand has not occurred in September for the past five years. However, for operational planning purposes

maximum system demand is assumed to occur at any time in June to September period. Historically, maximum system demand has not occurred in September for the past five years. However, for operational planning purposes maximum system demand is assumed to occur at any time in June to September period. 5

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep ⁶	Oct	Nov	Dec
Ballarat	24	28	34	44	57	68	68	68	68	51	44	36
Geelong	69	74	82	94	109	123	123	123	123	102	94	84
Gippsland	47	49	54	60	69	76	76	76	76	65	60	55
Melbourne	274	321	410	545	708	852	852	852	852	632	535	425
Northern	49	54	63	77	95	110	110	110	110	87	76	65
Western	12	13	14	15	17	19	19	19	19	16	15	14
System demand	475	539	657	835	1,055	1,248	1,248	1,248	1,248	953	824	679

Table 13 Monthly 1-in-20 peak day demand forecasts by SWZ for 2015 (TJ/d)

Table 14 Monthly maximum hour system demand forecasts by SWZ for 2015 (TJ/h)

	SWZ	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep ⁷	Oct	Nov	Dec
1-in-2	Ballarat	0.8	1.0	1.3	2.7	3.6	4.2	4.2	4.2	4.2	3.3	2.1	1.8
peak hour	Geelong	3.1	3.1	3.3	4.7	6.1	6.8	6.8	6.8	6.8	5.4	4.3	3.9
	Gippsland	1.9	2.0	2.2	2.9	3.7	4.2	4.2	4.2	4.2	3.3	2.8	2.3
	Melbourne	13.4	14.5	18.3	33.3	46.0	51.9	51.9	51.9	51.9	38.9	27.8	21.9
	Northern	2.1	2.3	2.7	4.0	6.0	6.5	6.5	6.5	6.5	5.4	3.0	2.7
	Western	0.5	0.5	0.5	0.7	0.8	1.0	1.0	1.0	1.0	0.9	0.8	0.6
	System demand ⁸	21.7	22.9	27.8	47.3	65.5	74.4	74.4	74.4	74.4	56.4	40.8	32.9
1-in-20	Ballarat	0.9	1.1	1.5	3.0	4.0	4.7	4.7	4.7	4.7	3.7	2.3	2.0
peak hour	Geelong	3.3	3.3	3.6	5.0	6.5	7.4	7.4	7.4	7.4	5.8	4.6	4.2
	Gippsland	2.0	2.1	2.3	3.1	4.0	4.5	4.5	4.5	4.5	3.6	3.0	2.5
	Melbourne	15.0	16.3	20.5	37.3	51.6	58.1	58.1	58.1	58.1	43.6	31.2	24.5
	Northern	2.3	2.5	2.9	4.4	6.6	7.2	7.2	7.2	7.2	5.9	3.3	2.9
	Western	0.5	0.5	0.5	0.7	0.9	1.1	1.1	1.1	1.1	1.0	0.8	0.7
	System demand	24.1	25.4	30.8	52.4	72.6	82.5	82.5	82.5	82.5	62.6	45.3	36.5

⁶ Historically, maximum system demand has not occurred in September for the past five years. However, for operational planning purposes

⁷ Historically, maximum system demand is assumed to occur at any time in June to September period.
 ⁸ System demand is assumed to occur at any time in June to September period.
 ⁸ System demand is not the sum of all SWZs as it refers to the maximum hour system demand for the DTS.

CHAPTER 2. SUPPLY FORECAST

Table 15 Annual supply forecast by SWZ and injection point/or aggregated injection points (PJ/yr)

SWZ	Injection point	2015	2016	2017	2018	2019
Gippsland	Longford available	299	291	304	100	85
	Longford prospective	26	45	24	253	288
	BassGas available	24	25	25	25	25
	BassGas prospective	0	0	0	0	0
	Total available	323	316	329	125	110
	Total available plus prospective	349	361	353	379	397
Geelong	Port Campbell available	59	43	45	46	41
	Port Campbell prospective	0	9	9	7	0
	Total available plus prospective	59	52	54	53	41
Northern	Culcairn available	2	2	2	2	2
	Culcairn prospective	2	2	2	2	2
	Total available plus prospective	4	4	4	4	4
Melbourne	LNG available*	0.55	0.55	0.46	0.30	0.30
Total available		384	361	377	174	153
Total prospecti	ve	28	56	35	262	290
Total available	plus prospective	412	417	411	436	443

* LNG available is the LNG contracted by market participants.

Table 16 Peak day supply forecast by SWZ and injection point (TJ/d)

		-	• •	•		
SWZ	Injection Point	2015	2016	2017	2018	2019
Gippsland	Longford available	956	944	1,035	304	260
	Longford prospective	92	124	63	680	783
	BassGas available	67	67	67	67	67
	BassGas prospective	0	0	0	0	0
	Total available	1,023	1,011	1,102	371	327
	Total available plus prospective	1,115	1,135	1,166	1,051	1,111
Geelong	Port Campbell available	520	398	404	239	223
	Port Campbell prospective	0	45	45	45	0
	Total available plus prospective	520	443	449	284	223
Northern	Culcairn available	58	58	58	58	50
	Culcairn prospective	5	5	5	5	5
	Northern available plus prospective	63	63	63	63	55
Melbourne	LNG available	87	87	87	87	87
Total available		1,600	1,467	1,565	668	600
Total prospectiv	ve	97	174	113	730	788
Total available	plus prospective	1,697	1,641	1,678	1,398	1,389

											•	,
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Longford ^a	676	597	754	767	982	1,010	1,011	1,019	1,003	964	956	950
BassGas ^ь	67	0	0	67	0	67	67	67	67	67	67	67
Port Campbell ^c	482	482	482	211	520	520	520	520	520	498	482	482
Culcairn	50	50	50	50	50	50	50	50	50	50	50	50
LNG ^d	87	87	87	87	87	87	87	87	87	87	87	87
Total supply	1,361	1,215	1,372	1,181	1,638	1,733	1,734	1,742	1,726	1,665	1,641	1,635

Table 17 Available monthly peak day gas supply forecast, January to December 2015 (TJ/d)

a. Longford includes gas supply from both the Longford gas plant and the VicHub injection point.
b. BassGas plant has planned maintenance in February, March, and May.
c. Port Campbell includes gas supply from lona underground gas storage (UGS), South East Australia Gas Pipeline (SEA Gas), Otway, and Mortlake injection points. Port Campbell supply is subject to the net transportation capacity of the South West Pipeline (SWP) and Western Transmission System (WTS). Planned maintenance at Iona UGS in April will reduce injection into the SWP. SEA Gas, Otway and Mortlake can still inject into the SWP.

d. Vaporising capacity of up to 100 t/h will be available over 16 hours for peak shaving. This capacity equates to the vaporisation of 87 TJ/d, reflecting the contracted available rate for the outlook period.

Table 18 Dandenong LNG facility capacity and operating parameters

		Note
Storage capacity	12,400 tonnes (680TJ)	
Available to market participants	10,036 tonnes (550TJ)	from 1 February 2015
Operational or contractual commitments to third party customers	2,372 tonnes (130TJ)	from 1 February 2016
Vaporising rate	100 tonne/hour (87TJ/d)	available over 16 hours for peak shaving. It is contracted available rate
Maximum vaporising rate	180 tonne/hour	
Liquefaction rate	1,500 tonne/month	averaging approximately 50 tonne/d or 2.7 TJ/d

Table 19 Iona UGS capacity and operating parameters

		Note
Storage capacity	22,000 TJ	from 2015 to 2019
Available to market participants (injection)	420 TJ	from 2015 to 2019
Available to market participants (withdrawal)	124 TJ	from 2015 to 2019
Maximum injection rate	500 TJ/d	from 2015 to 2019
Maximum withdrawal rate	160 TJ/d	from 2015 to 2019

CHAPTER 3. CAPACITY INFORMATION

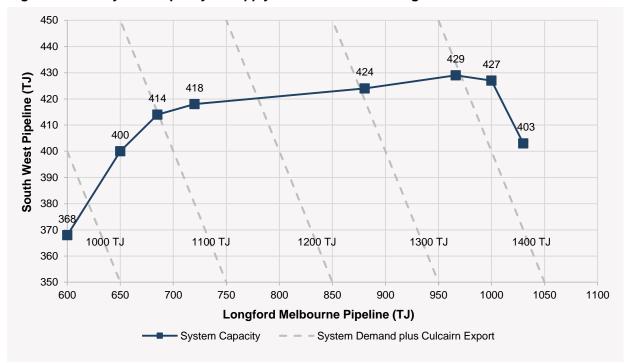
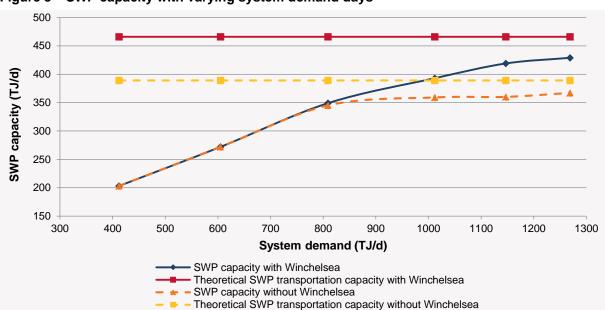




Figure 2 DTS system capacity to supply demand between Longford and Iona

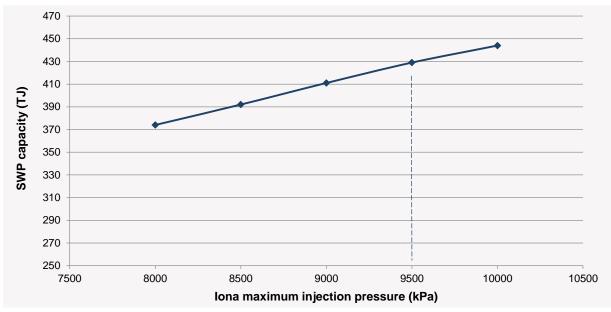
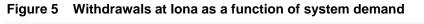
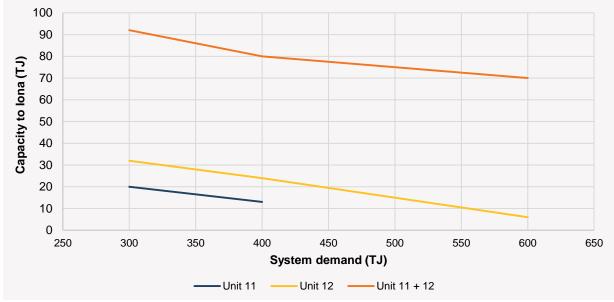




Figure 4 SWP capacity with varying lona pressure

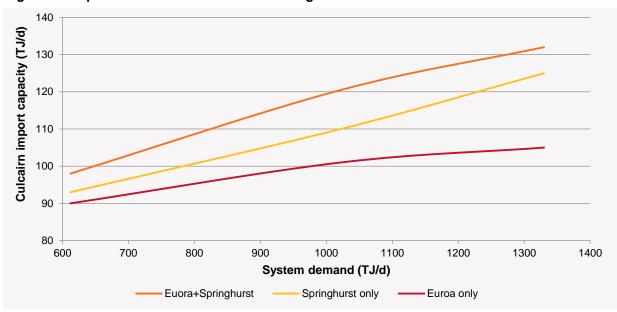
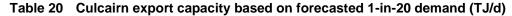
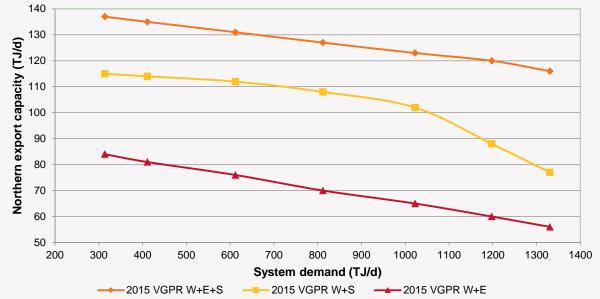
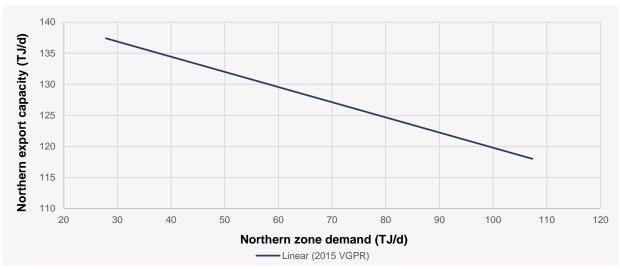
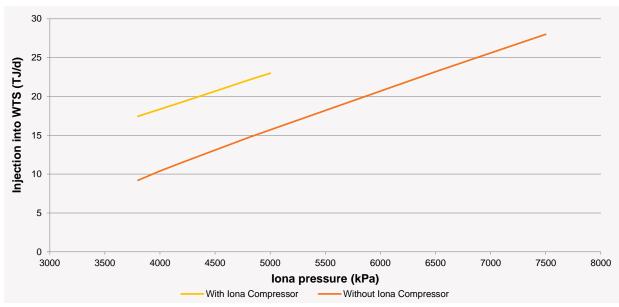
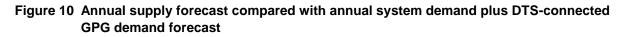




Figure 6 Imports from New South Wales through Culcairn

	2015	2016	2017	2018	2019
Forecast system demand	1,248	1,257	1,252	1,246	1,238
Northern Zone demand	110	112	113	113	113
Culcairn export	118	118	118	118	119

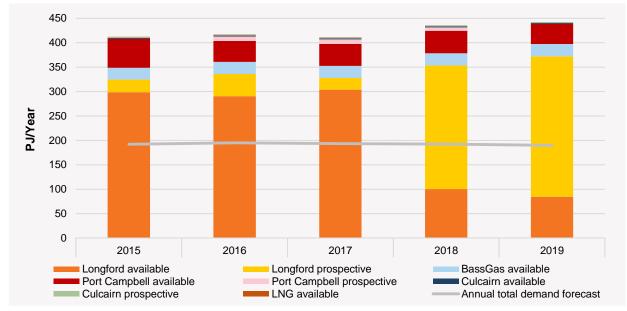

Figure 8 Impact of Northern Zone local demand on Culcairn export capacity

Figure 9 Western Transmission System injections and Iona pressures

CHAPTER 4. ADEQUACY ASSESSMENT

Table 21 Peak day supply-demand outlook

	2015	2016	2017	2018	2019
1-in-20 peak day system demand (TJ/d)	1,248	1,257	1,252	1,246	1,238
GPG demand (TJ/d)	25	25	25	25	25
Culcairn Export (TJ/d)	118	118	118	118	119
Total demand (TJ/d)	1,391	1,400	1,395	1,389	1,382
Port Campbell (TJ/d)	429	429	429	429	429
BassGas (TJ/d)	67	67	67	67	67
Without LNG (TJ/d)	0	0	0	0	0
Required Longford supply without LNG (TJ/d)	895	904	899	893	886
With LNG (TJ/d)	87	87	87	87	87
Required Longford supply (TJ/d)	808	817	812	806	799

 \mathbf{O}

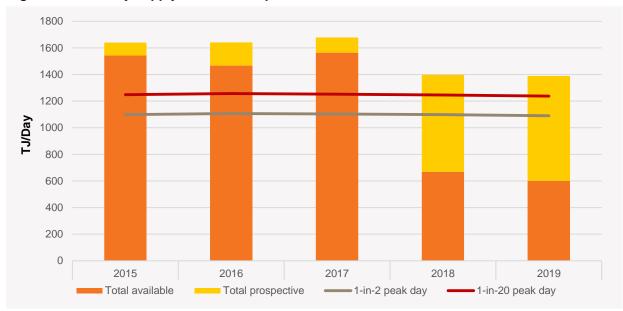


Figure 11 Peak day supply forecast compared with scenario demand

Table 22 Monthly supply-demand outlook for 2015

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1-in-20 (TJ/d)	475	539	657	835	1055	1,248	1,248	1,248	1248	953	824	679
Culcairn Export (TJ/d)	118	118	118	118	118	118	118	118	118	118	118	118
GPG Demand (TJ/d)	164	164	164	164	164	25	25	25	25	164	164	164
Total Demand (TJ/d)	757	821	939	1117	1337	1391	1391	1391	1391	1235	1106	961
Port Campbell (TJ/d)	429	429	429	211	429	429	429	429	429	429	429	429
BassGas (TJ/d)	67	0	0	67	0	67	67	67	67	67	67	67
Required Longford supply without LNG (TJ/d)	261	392	510	839	908	895	895	895	895	739	610	465
With LNG (TJ/d)	87	87	87	87	87	87	87	87	87	87	87	87
Required Longford supply (TJ/d)	174	305	423	752	821	808	808	808	808	652	523	378

SWZ	Constraints	Additional Information
Gippsland	No constraints identified	The Longford Melbourne Pipeline (LMP) capacity is 1,030 TJ/d. Although available peak day gas supply forecasts provided by market participants indicate approximately 1,000 TJ/d from Gippsland SWZ, the highest injection in the past three years is 920 TJ/d. The capacity of the Longford pipeline is currently underutilised. On the Warragul lateral, there was one occasion last year when the pressure of the lateral dropped below the minimum due to an unexpected high load. This issue has been temporarily solved by increasing the supply pressure to the Lurgi pipeline from the Morwell backup regulator at Dandenong. Looping of the 4.87 km lateral would be a permanent solution to this localised issue, if high demand continues in the future.
Geelong	No constraints identified	The South West Pipeline (SWP) capacity is 429 TJ/d. Before the commissioning of Winchelsea Compressor Station, the pipeline was reaching its capacity during high demand days. This was demonstrated by a number of Net Flow Transportation Constraints (NFTC) on the SWP during previous winters. Given the 62TJ/d capacity increase with the Winchelsea compressor, the pipeline is sufficient, based on the demand forecast for the next five years. The withdrawal capacity at Iona has been eroded due to the demands of new connections off the BLP, such as the flow through the Plumpton PRS and Qenos load. However, the maximum withdrawal capacity is 92 TJ/d when both unit 11 and unit 12 compressors are in operation at Brooklyn. Recent information provided by participants indicates that gas supply to the Iona Underground Storage (UGS) plant is in decline. This could have implications for the ability of the DTS to meet peak Victorian gas demand. AEMO is investigating and will update the market as soon as practical. If the future requirement for Iona withdrawal increases, there are options to increase withdrawal capacity, such as by completing the Western Outer Ring Main project.
Northern	No constraints identified	APA Group's Victoria – New South Wales Interconnect expansion project has increased the export capacity to 118 TJ/d on a 1-in-20 peak system demand day. It will be completed by winter 2015. Refer to Table 20 for Northern Zone export capacity.
Melbourne	No constraints identified	Nil.
Ballarat	No constraints identified	Nil.
Western	No constraints identified	 If there is no injection at Iona and Brooklyn Compressor Station is not available, minimum pressures at Portland and Iluka will be breached during increased system load. AEMO will manage the risk with ongoing consultations with market participants to ensure that Brooklyn Compressor Station will be available when Iona is not injecting. Other solutions include: A new system injection point south of Hamilton to allow gas from the South East Australia Gas Pipeline (SEA Gas) to be injected into the Western Transmission System (WTS). Additional compression or looping of the WTS.

Table 23 DTS capacity adequacy by SWZ

CHAPTER 5. IMPACT FROM GPG DEMAND

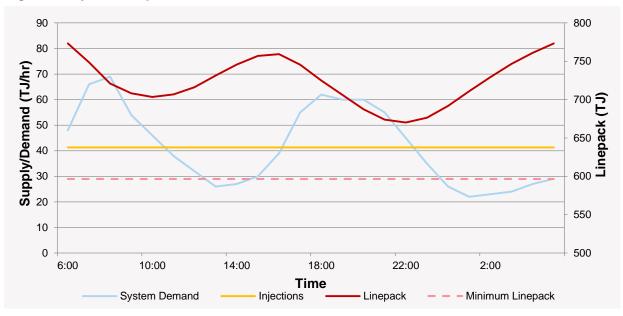
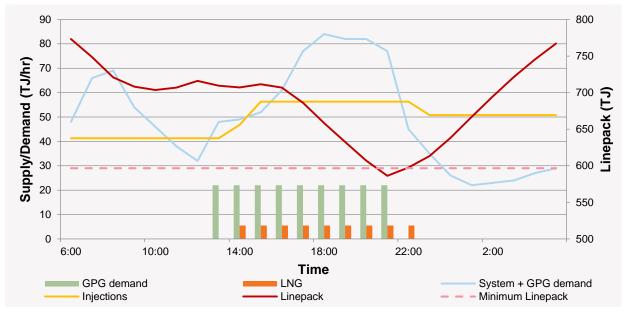



Figure 12 System linepack without unscheduled GPG demand

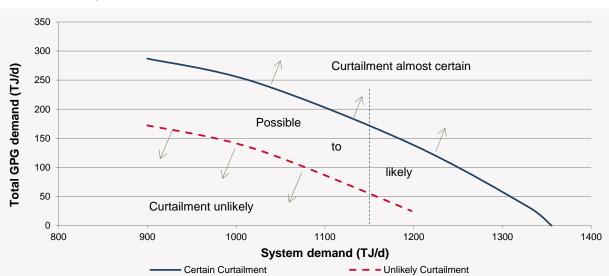


Figure 14 Relationship between scheduled GPG demand, system demand, and curtailment limits

CHAPTER 6. COMMITTED EXPANSIONS AND EXTENSIONS

Table 24 Committed expansions and extensions of the DTS

Projects	Completion	Status
Victorian Northern Interconnect Expansion (VNIE), Stages 1-5	June 2015	Committed
Mt. Cottrell CTM	March 2015	Committed
Bannockburn CTM	August 2015	Committed
Winchelsea CTM	March 2015	Committed
Thewlis Rd CTM, Pakenham	August 2015	Committed
Tasmanian Gas Pipeline connection	March 2016	Committed
Warragul Pipeline (currently in development stage)	June 2016	Proposed
SWP to Anglesea Pipeline (APA/AusNet at concept stage)	pre-winter 2018	Proposed

MEASURES AND ABBREVIATIONS

Units of measure

Abbreviation	Unit of measure
PJ	Petajoule
TJ	Terajoule

Abbreviations

These terms are used in the 2015 GSOO, Attachment A, Attachment B and/or the GSOO Methodology document.

Abbreviation	Expanded name
AEMO	Australian Energy Market Operator
APLNG	Australia Pacific LNG
CGP	Carpentaria Gas Pipeline
EGP	Eastern Gas Pipeline
GDP	gross domestic product
GLNG	Gladstone LNG
GPG	Gas powered generation
GSOO	Gas Statement of Opportunities
LMP	Longford to Melbourne Pipeline
LNG	Liquefied Natural Gas
MAPS	Moomba to Adelaide Pipeline
MSP	Moomba to Sydney Pipeline
NQGP	North Queensland Gas Pipeline
QCLNG	Queensland Curtis LNG
QGP	Queensland Gas Pipeline
QLD	Queensland
RBA	Reserve Bank of Australia
RBP	Roma to Brisbane Pipeline
SEA Gas	South East Australia Gas Pipeline
SWP	South West Pipeline
SWQP	South West Queensland Pipeline
TGP	Tasmanian Gas Pipeline
WTS	Western Transmission System

GLOSSARY

These terms are used in the 2015 GSOO, Attachment A, Attachment B, and/or the GSOO Methodology document.

Term	Definition
1-in-2 peak day	The 1-in-2 peak day demand projection has a 50% probability of exceedance (POE). This projected level of demand is expected, on average, to be exceeded once in two years. Also known as the 50% peak day.
1-in-20 peak day	The 1-in-20 peak day demand projection (for severe weather conditions) has a 5% probability of exceedance (POE). This is expected, on average, to be exceeded once in 20 years. Also known as the 95% peak day.
1C contingent resources	Low estimate of contingent resources.
2C contingent resources	Best estimate of contingent resources.
3C contingent resources	High estimate of contingent resources.
1P reserves	A low-side estimate of quantities of gas that are reasonably certain to be recoverable in future under existing economic and operating conditions. Also known as proved gas reserves.
2P reserves	The sum of proved-plus-probable estimates of gas reserves. The best estimate of commercially recoverable reserves. Often used as the basis for reports to share markets, gas contracts, and project economic justification.
3P reserves	The sum of proved, probable, and possible estimates of gas reserves.
Gas Bulletin Board (GBB)	A website (www.gbb.aemo.com.au) managed by AEMO that provides information on major interconnected gas processing facilities, gas transmission pipelines, gas storage facilities, and demand centres in eastern and south-eastern Australia. Also known as the National Gas Market Bulletin Board or simply the Bulletin Board.
gas powered generation (GPG)	Where electricity is generated from gas turbines (combined-cycle gas turbine (CCGT) or open- cycle gas turbine (OCGT)).
lateral	A pipeline branch.
linepack	The pressurised volume of gas stored in the pipeline system. Linepack is essential for gas transportation through the pipeline network each day, and as a buffer for within-day balancing.
liquefied natural gas (LNG)	Disconnection of electricity customer load. Natural gas that has been converted into liquid form for ease of storage or transport.
LNG train	A unit of gas purification and liquefaction facilities found in a liquefied natural gas plant.
peak day	Over the course of a season (winter or summer), the day on which maximum gas demand occurs.
peak shaving	Meeting a demand peak using injections of vaporised liquefied natural gas (LNG).
possible reserves	Estimated quantities that have a chance of being discovered under favourable circumstances. 'Possible, proved, and probable' reserves added together make up 3P reserves.
probability of exceedance (POE)	Refers to the probability that a forecast electricity maximum demand figure will be exceeded. For example, a forecast 10% probability of exceedance (POE) maximum demand will, on average, be exceeded only 1 year in every 10.
probable reserves	Estimated quantities of gas that have a reasonable probability of being produced under existing economic and operating conditions. Proved-plus-probable reserves added together make up 2P reserves.
production	In the context of defining gas reserves, gas that has already been recovered and produced.
prospective resources	Gas volumes estimated to be recoverable from a prospective reservoir that has not yet been drilled. These estimates are therefore based on less direct evidence.
proved resources	Estimated quantities of gas that are reasonably certain to be recoverable in future under existing economic and operating conditions. Also known as 1P reserves.
proved-plus-probable	See 2P reserves.
reservoir	In geology, a naturally occurring storage area that traps and holds oil and/or gas.
reserves	Gas resources that are considered to be commercially recoverable and have been approved or justified for commercial development.
resources	See contingent resources and prospective resources.
shale gas	Gas found in shale layers that cannot be economically produced using conventional oil and gas industry techniques. See unconventional gas.

Term	Definition
unconventional gas	Gas found in coal seams, shale layers, or tightly compacted sandstone that cannot be economically produced using conventional oil and gas industry techniques.
within-day balancing	The balancing of supply and demand during the gas day by use of scheduled injections and depletion of system linepack. Liquefied natural gas (LNG) is used as an additional supply if linepack is predicted to fall below the minimum level required for system security.