

2020 ISP Appendix 5. Renewable Energy Zones

July 2020

Important notice

PURPOSE

This is Appendix 5 to the 2020 Integrated System Plan (ISP), available at <u>https://aemo.com.au/energy-systems/major-publications/integrated-system-plan-isp</u>.

AEMO publishes this 2020 ISP pursuant to its functions under section 49(2) of the National Electricity Law (which defines AEMO's functions as National Transmission Planner) and its broader functions under the National Electricity Rules to maintain and improve power system security. In addition, AEMO has had regard to the National Electricity Amendment (Integrated System Planning) Rule 2020 which commenced on 1 July 2020 during the development of the 2020 ISP.

DISCLAIMER

This document or the information in it may be subsequently updated or amended. This document does not constitute legal or business advice, and should not be relied on as a substitute for obtaining detailed advice about the National Electricity Law, the National Electricity Rules, or any other applicable laws, procedures or policies. AEMO has made every effort to ensure the quality of the information in this document but cannot guarantee its accuracy or completeness.

Accordingly, to the maximum extent permitted by law, AEMO and its officers, employees and consultants involved in the preparation of this document:

- make no representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of the information in this document; and
- are not liable (whether by reason of negligence or otherwise) for any statements or representations in this document, or any omissions from it, or for any use or reliance on the information in it.

Version	Release date	Changes
1.0	30/7/2020	Initial release

VERSION CONTROL

© 2020 Australian Energy Market Operator Limited. The material in this publication may be used in accordance with the <u>copyright permissions on AEMO's website</u>.

Contents

Summo	ary	6
A5.1.	Introduction	7
A5.2.	Integrating large volumes of variable renewable energy	8
A5.2.1	REZ identification	8
A5.2.2	REZ candidates	9
A5.2.3	Resource quality and correlation	11
A5.3.	REZ framework and design principles	13
A5.3.1	Network and non-network requirements in the future power system	13
A5.3.2	Regulatory framework	14
A5.3.3	Stages in the life of a REZ	14
A5.3.4	Network topology	16
A5.3.5	Managing local power system requirements	17
A5.4.	ISP REZ development	19
A5.4.1	ISP development opportunities – REZs	20
A5.4.2	New South Wales REZ assessment	21
A5.4.3	Queensland REZ assessment	28
A5.4.4	South Australia REZ assessment	33
A5.4.5	Tasmania REZ assessment	36
A5.4.6	Victoria REZ assessment	37
A5.5.	REZ scorecards	41
A5.5.1	REZ scorecard details	41
A5.5.2	New South Wales REZ scorecards	45
A5.5.3	Queensland REZ scorecards	68
A5.5.4	South Australia REZ scorecards	89
A5.5.5	Tasmania REZ scorecards	109
A5.5.6	Victoria REZ scorecards	117

Tables

Table 1	ISP REZ developments	21
Table 2	New South Wales REZ report card	23

Table 3	North West New South Wales REZ network expansion	25
Table 4	North West New South Wales REZ parameters	26
Table 5	New England REZ network expansion	26
Table 6	New England REZ parameters	28
Table 7	Queensland REZ report card	29
Table 8	Proposed network development options for Far North Queensland REZ	31
Table 9	CQ-SQ transmission project	32
Table 10	Gladstone Grid Reinforcement transmission augmentation	33
Table 11	South Australia REZ report card	34
Table 12	Mid-North South Australia Network Project	35
Table 13	South East South Australia proposed REZ development	36
Table 14	Tasmania REZ report card	37
Table 15	Victoria REZ report card	39
Table 16	Committed Western Victoria Transmission Network Project	39

Figures

Weighted wind (left) and solar (right) resource areas	9
2020 Renewable Energy Zone candidates	10
Stages in the life of a renewable energy zone, as of June 2020	15
Variable renewable energy developed by 2039-40 for all scenarios based on the least-cost development paths*	19
New South Wales projected wind (left) and solar (right) capacity build (MW) across all scenarios	22
Projected capacity build (MW) for North West New South Wales REZ across all scenarios	24
Projected capacity build (MW) for New England REZ across all scenarios	28
Queensland's projected wind (left) and solar (right) capacity build (MW) across all scenarios	29
South Australia's projected wind (left) and solar (right) capacity build (MW) across all scenarios	34
Tasmania's projected wind (left) and solar (right) capacity build (MW) across all scenarios	37
Victoria's projected wind (left) and solar (right) capacity build (MW) across all scenarios	38
Projected capacity build (MW) for Western Victoria REZ across all scenarios	40
	2020 Renewable Energy Zone candidates Stages in the life of a renewable energy zone, as of June 2020 Variable renewable energy developed by 2039-40 for all scenarios based on the least-cost development paths* New South Wales projected wind (left) and solar (right) capacity build (MW) across all scenarios Projected capacity build (MW) for North West New South Wales REZ across all scenarios Projected capacity build (MW) for New England REZ across all scenarios Queensland's projected wind (left) and solar (right) capacity build (MW) across all scenarios South Australia's projected wind (left) and solar (right) capacity build (MW) across all scenarios Tasmania's projected wind (left) and solar (right) capacity build (MW) across all scenarios

2020 ISP Appendices

Appendix 1. Stakeholder Engagement

Stakeholder engagement program and timelines Consultation on Draft 2020 ISP

Appendix 2. Cost Benefit Analysis

An economically efficient development path

Appendix 3. Network Investments

Network investments in the optimal development path Committed ISP projects Actionable ISP projects Future ISP projects recommended with preparatory activities Other future ISP projects Addressing network congestion Alternatives considered

Appendix 4. Energy Outlook

Future energy supplies for a resilient power system

Unlocking VRE through REZs Managing variable energy supplies through

energy storages and firming technologies Development outlooks across scenarios NEM emission intensity with the least-cost optimal development path

Appendix 5. Renewable Energy Zones

Integrating large volumes of VRE REZ framework and design principles ISP REZ development REZ scorecards

Appendix 6. Future Power System Operability

Power system operability models and input NEM-wide operability outlook Regional risks and insights

Appendix 7. Future Power System Security

Renewable Integration Study System strength outlook Inertia outlook REZ opportunities South Australia in transition

Appendix 8. Resilience and Climate Change

Resilience in the 2020 ISP Forecasting climate impacts on energy systems Planning for a climate-resilient network Next steps

Appendix 9. ISP Methodology

Overview of ISP methodology Inputs Engineering assessment Model outputs

Appendix 10. Sector Coupling

Hydrogen EVs Gas Energy efficiency Bioenergy

Summary

This Renewable Energy Zones (REZs) appendix provides technical details on the determination of the 35 candidate REZs. It discusses VRE development opportunities within REZs and highlights transmission network augmentations required to support this VRE development.

AEMO has assessed 35 candidate REZs across the NEM through consideration of a mix of resources, current and future transmission network capacities and cost, and other technical and engineering considerations. Stakeholder engagement – with traditional owners, residents, broader communities, and local governments – will be essential prior to and during any large-scale development of a REZ. The co-ordination of generation and transmission development is key to the success of a REZ.

- The ideal near-term REZ locations take advantage of both attractive renewable resources and existing transmission capacities. Early development of VRE is primarily driven by regional energy targets (RETs) and other government policies.
- To connect VRE beyond the current transmission capacity, network investment will be required. The ISP considers how to best develop future REZs in a way that is optimised with necessary transmission developments, identifying indicative timing and staging that will best coordinate REZ developments with identified transmission developments to reduce the overall costs.
 - It will generally be most efficient to increase network capacity in REZs that are aligned with identified interconnector upgrades such as the already committed ISP projects, actionable ISP projects, and future ISP projects (see Appendix 3).
- The development of large-scale REZs is required prior to the expected retirement of power stations from the late 2020s and mid-2030s.
- Targeted grid augmentations are required to balance resources and unlock REZ potential. These are described in the optimal development path: see Appendix 3.

A5.1. Introduction

This appendix is part of the 2020 ISP, providing more detail on the REZ development across various scenarios (see ISP Section D3).

The NEM is a long and sparsely connected power system, with concentrated load centres that are distant from one another. The current NEM transmission network was primarily designed to connect large centres of thermal and hydro generation to major demand centres some distance away.

The ISP re-confirms that the NEM power system will continue its significant transformation away from thermal generation and towards VRE. There are good wind and solar resources across all the NEM regions. There is already 8.7 GW of VRE installed¹, and another 5.1 GW expected to be operational in the next two years, as either committed or anticipated projects. Allowing for the strong growth in DER, Australia will still need an additional 34 to 47 GW of new VRE, depending on the scenario, much of it built in REZs. In the Slow Change scenario, only 4 GW would be needed by 2039-40.

The analysis of the ISP focuses on 35 short-listed candidate REZs. These REZ candidates are high-resource areas in the NEM where clusters of large-scale renewable energy projects can capture economies of scale as well as geographic and technological diversity in renewable resources. Each candidate REZ has potential for future VRE development.

Only some REZs need to be developed to facilitate additional VRE. The ISP's optimal development path is based on a robust cost-benefit analysis (see Appendix 2). The costs of upgrading the network and developing generation in each REZ is considered. Then only the highest value REZs are identified for possible network upgrades and new generation development. The integrated approach of the ISP also co-optimises major network projects that would unlock VRE capacity in some REZs.

Appendix 5 is set out in the following sections:

- A5.2 REZ candidates shortlisted for the ISP. AEMO has identified and mapped 35 areas across eastern Australia as candidate REZs. This section sets out how these candidates were developed, and their respective advantages.
- A5.3 REZ framework and design principles. These principles support robust and reliable REZs and are used to determine functional network designs, and preliminary costs to integrate the REZ to the transmission network. The insights from this process form inputs into the ISP to assist in identifying the co-optimised cost-effective REZ development pathway.
- A5.4 prioritisation and staging of REZ development. This describes the outcomes of the ISP for REZ development, prioritisations of REZ developments and staging, timing across scenarios, and the identification of actionable REZ transmission projects (being the associated network and non-network infrastructure required to implement the REZ). Functional network designs that integrate the REZs with the wider network are highlighted together with preliminary costing.
- A5.5 scorecards for each REZ arranged by state. This includes assessments of resource quality, network capability, preferred timing across scenarios, and system strength.

¹ Data is current as at April 2020, AEMO Generation Information Page, at <u>https://www.aemo.com.au/energy-systems/electricity/national-</u> <u>electricity-market-nem/nem-forecasting-and-planning/forecasting-and-planning-data/generation-information</u>.

A5.2. Integrating large volumes of variable renewable energy

This section of the appendix describes the elements considered in the identification of REZs. It also describes the 35 REZ candidates in the 2020 ISP.

AEMO has used information about resource quality and REZ development criteria developed for the 2018 ISP (outlined in A5.2.1), as well as feedback received through consultation for the 2020 ISP, to create the list of 35 REZ candidates.

A5.2.1 REZ identification

AEMO engaged consultants DNV-GL to provide information on the resource quality for potential REZs in the 2018 ISP. The wind resource quality assessment was based on mesoscale wind flow modelling at a height of 150 m above ground level (typical wind turbine height). Solar resource quality was assessed using Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) data from the Bureau of Meteorology (BOM). The work undertaken for the ISP is not intended in any way to replace the specific site assessment of potential wind and solar farm sites by developers.

These 10 development criteria were used to identify candidate REZs:

- Wind resource a measure of high wind speeds (above 6 m/s).
- Solar resource a measure of high solar irradiation (above 1,600 kW/m²).
- Demand matching the degree to which the local resources correlate with demand.
- Electrical network the distance to the nearest transmission line.
- Cadastral parcel density an estimate of the average property size.
- Land cover a measure of the vegetation, waterbodies, and urbanisation of areas.
- Roads the distance to the nearest road.
- Terrain complexity a measure of terrain slope.
- Population density the population within the area.
- Protected areas exclusion areas where development is restricted.

Figure 1 shows the results of this DVN-GL analysis, with the highest rating potential areas for development of wind and solar farms in green.

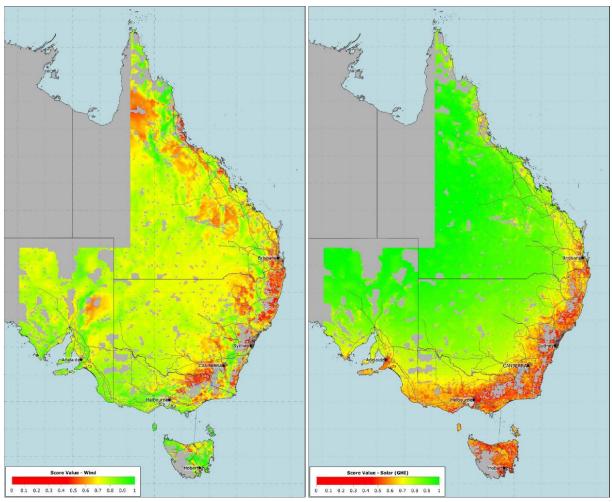


Figure 1 Weighted wind (left) and solar (right) resource areas

A5.2.2 REZ candidates

Using the resource quality and the development criteria together with feedback received throughout the 2020 ISP consultation, AEMO has identified 35 candidate REZs for the 2020 ISP.

Figure 2 shows the geographic locations of the 35 final REZ candidates.

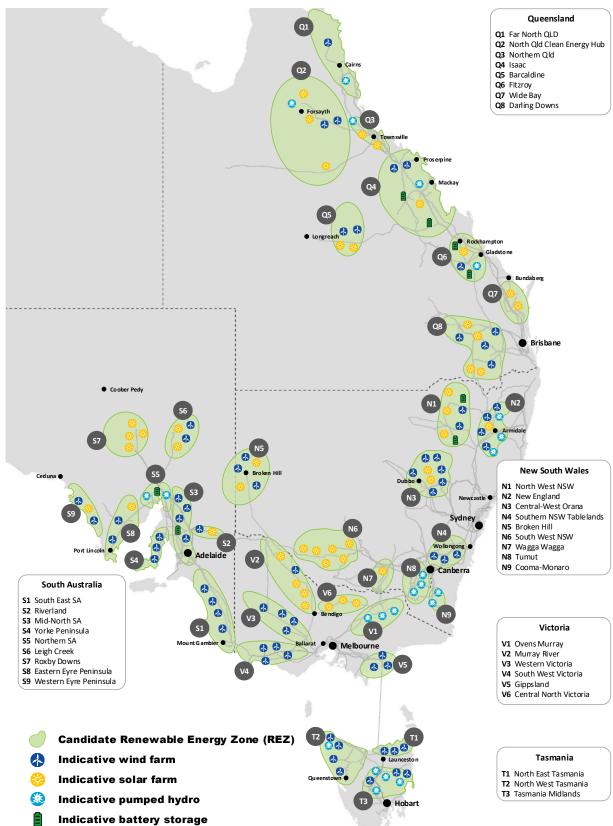


Figure 2 2020 Renewable Energy Zone candidates

The 2020 ISP has made several updates to the REZ candidates used in the 2018 ISP, based on further analysis and consultation:

- 1. The following new REZs are included in the analysis:
 - Wide Bay in Queensland (Q7).
 - Wagga Wagga in New South Wales (N7).
 - Central North Victoria (V6).
- 2. The former Murray River REZ, capturing resources to the west of New South Wales and Victoria, has been separated to form the:
 - Murray River REZ in Victoria (V2), and
 - South West New South Wales REZ in New South Wales (N6).
- 3. The New England and Northern New South Wales Tablelands REZs have been combined in the New England REZ (N2).
- 4. The former Central New South Wales Tablelands and Central-West New South Wales were refined to form the Central-West REZ (N3). Following the recent announcement by the New South Wales Government², this REZ's name has changed to Central-West Orana REZ (N3).
- 5. The Far North Queensland REZ (Q1) has been extended north to include wind resource capacity.

A5.2.3 Resource quality and correlation

Diversity of resources

An important consideration for large-scale development of renewables in a REZ is the diversity of resources available within the REZ and between other REZs in the NEM. High diversity means the REZs are valuable as they will generate power at different times. For example, when one has a low output, the other has a high output.

The analysis of REZs in the NEM shows:

- There is high solar energy correlation across the NEM for all REZs.
- Wind resources in Queensland provide the most diversity to wind generation in other areas. Wind generation in Tasmania is somewhat diverse to wind generation on the mainland particularly wind generation in Queensland, New South Wales, and South Australia.
- Wind generation within states is generally highly correlated.

There are five REZs that have low correlation with most of the NEM, meaning they are expected to generate electricity at different times to the rest of the NEM. These five REZs are all situated in Queensland and show good diversity with wind in the other regions of the NEM:

- Far North Queensland.
- North Queensland Clean Energy Hub.
- Isaac.
- Fitzroy.
- Wide Bay.

Wind development in these areas would allow for the diversification of renewable resources across the NEM and contribute to a firmer resource portfolio across the NEM. Development in these areas would also be

² New South Wales Government, 23 June 2020, at <u>https://energy.nsw.gov.au/renewable-energy-zone-sparking-investment-boom</u>.

impacted less by wind generation in other REZs, as the transmission paths to load centres would be less congested.

Generation diversity and demand matching

Integrating a large amount of highly correlated variable renewable generation can be more complicated for managing power system reliability than connecting poorly correlated generation. High levels of correlation – when a lot of nearby variable generation is producing (or not producing) energy at the same time – will increase congestion on the transmission network and volatility in electricity market dispatch.

Generation correlation can be influenced by technology, location, and time of day.

There are several ways to achieve diversity with renewable generation, and improve system efficiency:

- Diversify the type of renewable generation built. For example, wind generation within a REZ is likely to be highly correlated to other wind generation within the same REZ, whereas solar generation is likely to be relatively uncorrelated to wind generation in the same area.
- Diversify the geographical location of the renewable generation built. For example, wind generation located in different geographical areas is likely to be less correlated than wind generation within the same geographical area.
- Select REZs where the combined output from renewable resources is positively correlated with grid demand.
- Co-develop energy storage and variable renewable generation in the same REZ, to allow the net REZ
 output to be more correlated with demand or within transmission capacity. Resource and demand are
 both variable, based on seasons and time of the day. If the availability of energy is coincident with the
 demand, it can be accommodated more economically. In assessing the REZs for analysis in the ISP, the
 optimisation considered the correlation of REZ resource with demand.

A5.3. REZ framework and design principles

The ideal near-term REZ locations would take advantage of both attractive renewable resources and spare transmission capacity. VRE in these REZs will be cheaper than building the network infrastructure needed to unlock a new REZ.

As the existing network reaches capacity, large-scale transmission infrastructure extensions, into new regions with good diverse resource capacity, will be required to connect REZs. Any new transmission network built to connect REZs should be cost-effective while:

- Providing reliability and security.
- Minimising environmental impacts during and after construction.
- Adhering to relevant design standards.
- Meeting regulatory requirements.
- Creating maximum flexibility and expandability.
- Addressing future needs of the power system.
- Maximising efficiencies through coordination of the various development needs within the REZ together with the integration of needs for augmentations to the shared network.

This section discusses the frameworks and design principles in planning network augmentations for REZs.

A5.3.1 Network and non-network requirements in the future power system

Transmission connection in the NEM is currently open access. That means, subject to meeting connection requirements (including generation performance standards and other technical, legal, and financial requirements) a new development is permitted to connect to any part of the transmission network. The connection may be conditional upon the project remediating any negative impact on system strength.

Further development of renewable resources in the REZ may require additional augmentation of the shared network. An incremental approach risks an overall higher cost of developing the REZ. For example, it is generally less expensive to build one high capacity transmission line than to build one lower capacity transmission line which is later duplicated. These risks to generators could be reduced through effective REZ development, aligning the development of transmission network capacity with likely renewable energy build in the REZ, with a view to both current and future requirements.

This highlights the importance of coordinated staging of generation and transmission development that minimises risks of under- and over-utilisation while ensuring reliability and security of the power system is maintained. Ways to stage a transmission development include, but are not limited to:

- Acquiring strategic easements ahead of their build.
- Building a double-circuit tower but stringing a single-circuit initially.

• Developing a substation incrementally but having a footprint that accounts for an ultimate development.

It will be essential in the development of transmission to support REZs that these options are explored, to minimise any stranding risk and maximise option value. In the development of the ISP, AEMO has sought to optimise REZs in conjunction with transmission development to achieve the lowest overall cost of development.

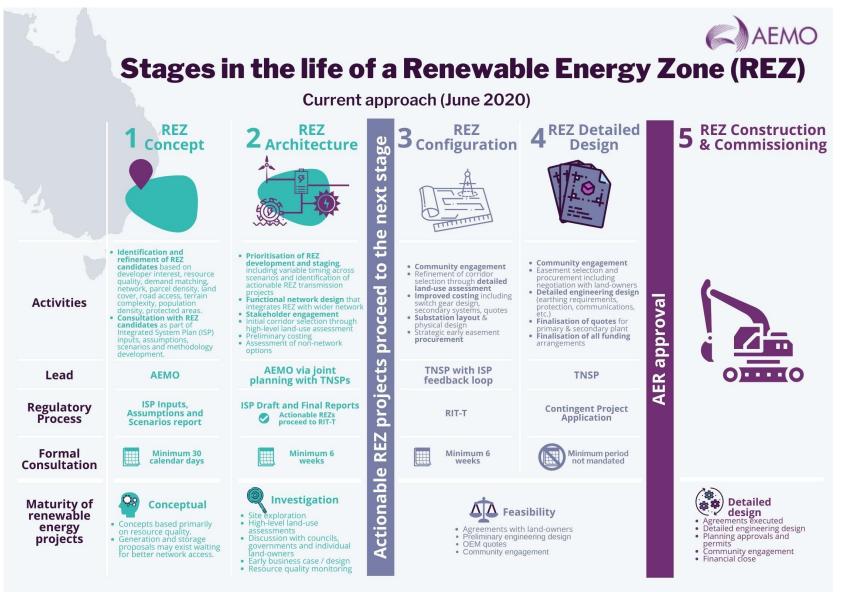
A5.3.2 Regulatory framework

In developing the ISP, AEMO recognises work the AEMC is undertaking into the Coordination of Generation and Transmission Investment (COGATI) review including improved access arrangements, and also the work that the ESB is undertaking on interim options for coordinated development of REZs. The COAG Energy Council on 20 March 2020 asked the ESB to support the development of REZs with a two-stage approach that includes rules for an Interim REZ Framework and later a REZ Connection Hub development:

- Stage 1 rules would require TNSPs to prepare detailed staged plans for each priority REZ identified in the ISP. These detailed designs would consider the required transmission infrastructure and the best place to locate the connection hubs within the REZ.
- Stage 2 rules are intended to provide for REZ Connection Hub Development, described as the development of stages (or connection hubs) within REZ development plans. In this stage, the ESB will also consider how access is defined and how costs related to augmentation of the shared network should be recovered.

The intention of these programs is to apply the outcomes of the ISP for REZ development. This ISP identifies and prioritises REZs for development as part of the optimal development path.

AEMO also recognises the initiative by the New South Wales Government to accelerate the development of the Central-West Orana REZ together with arrangements to provide firmer connection access. This ISP incorporates the consequential shared transmission network upgrades as an actionable ISP project. Finally, AEMO recognises the proposals by TransGrid to accelerate development of the New England REZ. These proposals were only in the early stages of development when this ISP was finalised and are therefore not included.


A5.3.3 Stages in the life of a REZ

In June 2020, AEMO published information outlining the developmental stages of a REZ³. Figure 3 outlines the stages in the life of a REZ under the current regulatory frameworks.

The process outlines activities currently carried out by AEMO as part of the ISP and those carried out by the TNSP through the RIT-T and the contingent project application.

³ AEMO, 15 June 2020, at https://aemo.com.au/en/news/isp-rez.

A5.3.4 Network topology

Network topology refers to how various substations, generators, loads and other electrical transmission devices are physically or logically arranged in relation to each other. The network topology is important as it directly influences how well the network will function during system normal conditions and under credible and non-credible contingencies.

The following should be considered in the design of a reliable REZ:

- Staging and interconnection.
 - Where possible, the REZ design should leverage off and/or contribute to the efficient and optimised design of the shared transmission network. REZs should be staged to increase transmission capacity at appropriate levels to co-optimise investment in transmission and generation. For example, staging can be achieved by building a double-circuit tower but stringing a single-circuit initially and early acquisition of strategic easements for later stages. The design would be enhanced by understanding the long-term strategic transmission development in the area such that the staging of the REZ development and costs can be optimised. Where REZs have the capability to form part of interconnectors, the REZ design should take this into account, to enable efficient interconnector development.
- Number of connections to the main grid and route diversity.
 - When a REZ reaches a certain critical capacity, it should connect to the main transmission network with at least two connection points. This looping allows for additional network reliability and route diversity. This would increase resilience, for example, to climate impact and bushfires.
- Network architecture.
 - Well-designed REZs should consider the architecture of the network needed to avoid the application of constraints on generation for contingency size. For example, if single easement radial connections were applied to large a REZ, this would imply a large single critical contingency size (possibly in excess of the current largest single contingency in the NEM). Contingency size is critical to the security of the NEM to manage frequency within the operating standards post a single contingency. A looped or more meshed integration, if designed well, could reduce the potential contingency size and reduce or avoid potential operational limits that may otherwise need to be applied to generation in the REZ.
- Sharing of connection assets.
 - Allowing for the connection of proponents at hubs, rather than connecting on a stand-alone basis along transmission lines, has the potential to provide a more reliable and cost-effective network connection. The hub connection reduces capital expenditure by minimising the duplication of connection infrastructure.
- Switching arrangements.
 - Adequate switching arrangements to allow for outage flexibility of equipment, minimising the impact on the transmission network.
- Adequate sizing and voltage levels selected.
 - The long-term ultimate arrangement for transmission development in the area can inform the appropriate site sizing and voltage levels at the relevant substations connecting proponents to the transmission network. In this way costs can be optimised through gains in economies of scale when executing major construction projects, like substations. Most of the substation engineering, procurement and construction work can happen at one time. This limits the exponential costs of retrofitted expansion projects that would be required into the future, if proper design principles were not considered.

A5.3.5 Managing local power system requirements

AEMO's Power System Requirements Reference Paper⁴ sets out the operational prerequisites which give AEMO the levers needed to operate the system securely and reliably. It also summarises the fundamental technical attributes for a resilient power system. These technical attributes should be considered when designing a REZ.

System operability

Under system normal conditions, in a well-designed REZ, generators should be able to operate and transfer energy to the shared network and thereon to consumers without undue thermal, voltage, or stability issues limiting their output. A well-designed REZ will also have a robust marginal loss factor (MLF) that will not deteriorate rapidly as more generation connects.

The REZ itself, being a cluster of varied types of resources, must remain stable following a credible single contingency and within the thermal, voltage, and frequency limits of the network. Further, AEMO must also be able to restore the system to a secure operating state within 30 minutes following a contingency event. Therefore, the design of a REZ needs to also consider the network topology both within the REZ and to the shared network, as well as contingency sizes that arise from its network design. Otherwise, AEMO may be forced to constrain generation within the REZ to manage the risks from a contingency.

Thermal capacity

The thermal capacity of a REZ is its maximum output without exceeding the ratings of a network elements following a credible contingency. It may be possible under certain circumstances to install generation in excess of this thermal level, provided that a fast-acting special protection scheme, such as a runback scheme, is implemented. The runback scheme would very quickly reduce and limit generation following a contingency to avoid thermal overloads (and thereby create safety hazards). Runback schemes allow the network to operate closer to its technical limits, reducing the need for network expansions.

The following should be considered for runback schemes:

- The loading of the network during system normal should remain within thermal limits.
- The impact on MLFs due to increased loading on the transmission network.
- The amount of generation to be reduced by the runback scheme must consider the effects it may have on the frequency. All relevant standards must be met.
- The need for close coordination with other schemes within the area.

Frequency

The REZ should be designed such that the loss of a single credible contingency does not cause the loss of significant generation that would result in frequency excursions exceeding the safe limits of the frequency operating standards.

Furthermore, following a contingency, AEMO is required to return the network to a secure operating state within 30 minutes. The deployment of runback schemes and the design of the network to and within the REZ should consider the implications for frequency, as very large quantities of generation are being projected in this ISP. Some REZs in the next decade are projected to be in excess of not just the largest unit in the current NEM, but the largest power station. Accordingly, the design of the REZ will need to ensure that contingency size is manageable.

⁴ AEMO, Power System Requirements Reference Paper, updated July 2020, at <u>https://aemo.com.au/-/media/Files/Electricity/NEM/Security and Reliability/</u> <u>Power-system-requirements.pdf</u>.

Voltage management

The power flow and voltage profile on the transmission network is determined by both generation and load. Large fluctuations in load and/or generation can have impacts on the transmission voltages. The intermittency of solar and wind generation will have an impact on voltages across the REZ as well as on the network where the REZ connects. Furthermore, the loss of a contingency such as transmission line can also impact the network voltages.

To manage fluctuating generation outputs and network contingencies, REZs should include the combination of active and passive voltage control equipment to manage voltages within acceptable levels. The reactive support required for the REZ would be dependent on the network topology and the technology mix within the REZ and can be provided through capacitor banks, reactors, Static Var Compensators (SVCs), and/or synchronous condensers.

System strength is a critical requirement for a stable and secure power system. A minimum level of system strength is required for the power system to remain stable under normal conditions and to return to a steady state following a disturbance. AEMO defines system strength as the ability of the power system to maintain and control the voltage waveform at any given location in the power system, both during steady state operation and following a disturbance⁵.

A REZ must comply with system strength requirements: see Appendix 7. The system strength requirements can be staged as the capacity of the generation connecting to the REZ increases over time. System strength requirements can be provided by synchronous condensers (individual or shared), synchronous generators, and/or other technologies, including appropriately designed or retro fitted inverter-based resources.

Resource adequacy

The variability of VRE resources is an important factor when considering the integration of REZ within the larger network, to reduce overall costs to consumers for additional firming supplies. When developing a REZ, dispatchable services (controllability, firmness and flexibility) should be considered. This may include firming up every MW of variable renewable generation with some ratio of firm generation. Co-developing energy storage and variable renewable generation in the same REZ, to allow the net REZ output to be more correlated with demand, may reduce the size of the network augmentation required and increase the utilisation of the REZ network.

System restoration

REZs must not inhibit the ability of AEMO and the local TNSP to restart the system under a black system event. Where technology within the REZ has capability to assist in system restart, it would be beneficial that the design of the network would be an enabler for this plant to support system restart if required.

⁵ AEMO, System Strength, March 2020, at <u>https://aemo.com.au/-/media/files/electricity/nem/system-strength-explained.pdf?la=en#:~:text=AEMO%20</u> sees%20system%20strength%20as,operation%20and%20following%20a%20disturbance.&text=Unlike%20 Most%20IBR%2C%20synchronous%20 Machines,coupled%20to%20the%20power%20system.

ISP REZ development

The following section presents AEMO's prioritisation and development of identified REZs within each NEM region. Factors that affect the development of a REZ include, but are not limited to:

- Energy targets, policies and scenarios.
- Resource quality.
- Existing network capacity.
- Demand correlation and correlation with other favourable REZs.
- Cost of developing or augmenting the transmission network.
- Proximity to the load centre.

Under every ISP scenario – Central, High DER, Step Change, Fast Change and Slow Change⁶ – the NEM's least-cost future features large increases in VRE generation. The increases are in both large-scale wind and solar connected to the grid and distributed PV installed by households and businesses. Targeted and strategic investment in the grid is needed to balance resources across states and to unlock much-needed REZs.

During the first 10 years of the forecast horizon, modest ongoing growth in VRE generation is forecast, driven by relative cost advantages and government policies, as seen in Figure 4. From 2029-30 onwards, large growth in VRE generation is forecast, driven by the need to replace energy from retiring thermal generation.

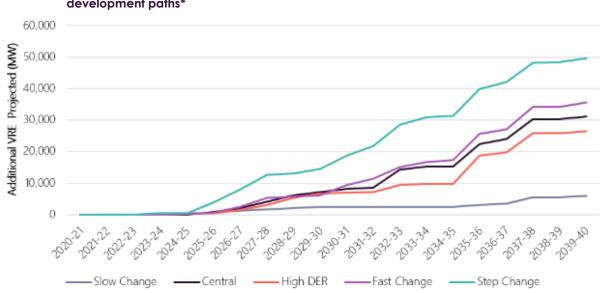


Figure 4 Variable renewable energy developed by 2039-40 for all scenarios based on the least-cost development paths*

* Except for the Slow Change scenario, which is based on the transmission investment with the low-regret, which includes all interconnectors that are developed in every other scenario with a fixed timing.

⁶ AEMO, 2019 forecasting and planning scenarios, inputs, and assumptions, at <u>https://aemo.com.au/-/media/files/electricity/nem/planning_and_forecasting/</u> inputs-assumptions-methodologies/2019/2019-20-forecasting-and-planning-scenarios-inputs-and-assumptions-report.pdf?la=en.

Each region is forecast to develop several REZs to enable the scale of VRE developments, providing an opportunity for diversely located renewable developments and storage projects to meet the needs of future customer demand. The ISP identifies the mix of REZ developments that maximises the efficient connection of these modelled ISP projects.

In this section, the ISP development opportunities for REZs are described. The sections that follow present the assessments of a REZ within these phases for each state in turn.

The REZs were assessed according to the defined criteria for assessment⁷. All VRE projections are based on the least-cost development paths, except for the Slow Change scenario. The Slow Change scenario is based on the transmission investment with the low regret, which includes all interconnectors that are developed in every other scenario with a fixed timing.

Proponents of new generation or storage should conduct their own due diligence, to understand how technical requirements might influence their connection. Engagement with traditional owners, residents, broader communities, and local governments will be essential prior to any large-scale development of a REZ. Timings presented are indicative only. It is important to note immediate actions identified in this ISP do not lock out opportunities for earlier development of any REZ, if economical in future.

A5.3.1 ISP development opportunities – REZs

REZ development can be categorised into three phases (described below), which reflect timing and drivers and should be co-ordinated with recommended augmentations of the network discussed in Appendix 3 and system strength remediation. These opportunities will take advantage of additional network capability introduced by new interconnectors where possible, as this is often the least-cost way of establishing REZs. However, some opportunities also require specific augmentations of the transmission network to unlock the REZ. There are three overlapping development phases.

Phase 1

VRE development to help meet regional energy targets, such as VRET, TRET and QRET, and other policies (such as the New South Wales Electricity Strategy and policy in respect of Central-West Orana REZ), until those schemes are complete and/or where there is good access to existing network capacity with good system strength within the current power system, good resource potential, and strong alignment with community interests.

Phase 2

VRE development to replace energy provided by retiring coal-fired generators announced to occur from the late 2020s, and/or where additional renewable development is supported by the recommended actionable ISP projects.

Phase 3

VRE development to accompany recommended future ISP projects that are being developed specifically to support them.

These REZs and their phasing are directly linked with ISP projects in the optimal development path and their timing. For actionable ISP projects with decision rules, the REZ developments and phasing assumes that the decision rules are met, and the ISP projects are delivered at the earliest timing.

⁷ The criteria used for this detailed assessment of REZs are defined in Section A5.2 of this report.

Table 1 ISP REZ developments

Phases of REZ development	Region	Description			
Phase 1 Connecting	Queensland	VRE development primarily in Darling Downs (wind and solar) and Fitzroy REZs (wind and solar) taking advantage of the existing spare network capacity to meet the QRET.			
renewables to support government	New South Wales	VRE development in Central-West Orana REZ (wind and solar) enabled by the Central-West Orana REZ Transmission Link, forming part of the NSW Electricity Strategy.			
policy	Victoria	VRE development in Western Victoria REZ (wind) to help meet VRET and supported by the committed Western Victoria Transmission Network Project.			
		VRE development in South West Victoria REZ (wind) and Central North Victoria REZ (wind and solar), taking advantage of the spare network capacity to meet the VRET.			
	Tasmania	The development of VRE in Midlands, North East Tasmania and North West to meet the TRET ^A .			
Phase 2 Connecting renewables in	New South Wales	VRE development in South West NSW REZ (solar) is supported by the development of Project EnergyConnect and VNI West (via Kerang), and Wagga Wagga REZ (solar) is supported by of HumeLink.			
areas supported by		Pumped hydro generation in Tumut REZ is supported by the development of HumeLink.			
actionable ISP projects	Victoria	Development of VRE in Central North Victoria REZ supported by VNI West (via Shepparton), or Murray River REZ supported by VNI West (via Kerang) ^A . VRE development in Western Victoria REZ is also supported VNI West (either via Kerang or Shepparton). Development of solar in Murray River REZ near Red Cliffs is supported by Project EnergyConnect.			
	South Australia	The development of solar in the Riverland REZ enabled by Project EnergyConnect.			
	Tasmania	The development of wind generation in the Midlands REZ which is supported by Marinus Link ^A .			
Phase 3 Connecting	Queensland	VRE development in Darling Downs REZ (wind and solar) is supported by expansions of QNI in 2032-33 and 2035-36.			
renewables in areas supported by future ISP projects		Larger VRE development in Fitzroy REZ (wind and solar) and Isaac REZ (wind) are supported by future ISP projects, Gladstone Grid Reinforcement and Central to Southern Queensland transmission project. Developments in Far North Queensland REZ requires upgrades within this REZ to connect renewable generation. Additional strengthening of the 275 kV network is also required.			
	New South Wales	VRE development of solar in North West NSW REZ supported by expansions of QNI in 2032-33 and 2035-36. Large developments of wind in New England would require support from a future ISP project to augment the transmission system from the REZ to provide stronger access to supply the greater Sydney region.			
	South Australia	VRE development in Roxby Downs REZ (solar) and Mid-North REZ (wind) are supported by network upgrades between Davenport and Para. Development of wind in South East SA REZ requires the support of a future ISP project to connect generation within the REZ.			

A. The REZ and timing are based on actionable ISP projects in the optimal development path satisfying decision rules and being delivered in accordance with the optimal development path.

A5.3.2 New South Wales REZ assessment

In New South Wales, with increased generation in the Snowy area and the increase in interconnection, little renewable generation development above committed generation is forecast in the first decade across the Central, High DER and Slow Change scenarios, as seen in Figure 5.

In the Step Change and the Fast Change scenarios, early development of renewable generation occurs in REZs with exiting network capacity or REZs that are supported by actionable ISP projects, namely Central-West Orana REZ Transmission Link, Project EnergyConnect, and HumeLink.

Figure 5 New South Wales projected wind (left) and solar (right) capacity build (MW) across all scenarios

AEMO assessed nine candidate REZs in New South Wales. The report card in Table 2 shows the transmission network upgrade timing and REZ phasing.

This assessment projects that it will be most efficient to:

- Increase network capacity in REZs that are aligned with identified interconnector upgrades such as:
 - The actionable ISP project, Project EnergyConnect, supporting South West New South Wales REZ.
 - The actionable ISP project HumeLink, supporting Wagga Wagga REZ.
- Undertake preparatory activities for the future QNI Medium and QNI Large upgrades to support development of the North West New South Wales REZ and New England REZ.
- Develop large-scale REZs prior to the closure of Eraring and Bayswater. The end-of-life retirement of Eraring is expected in early to mid-2030s and Bayswater in the mid-2030s.
 - Development of Central-West Orana REZ, New England and North West New South Wales REZs is required to assist meeting the energy needs of New South Wales.

From AEMO's analysis of the REZs for New South Wales, AEMO requires TransGrid to:

• Carry out preparatory activities for the New England REZ network expansions and the North West New South Wales REZ network expansion, including the publishing of a report required by 30 June 2021 (see Appendix 3).

REZ	Existing network	Hosting capacity increase with	Priority for generation connection	Network upgrade timing				
	capacity (MW)	new IC or future ISP projects		Central	Step	Fast	High DER	Slow
N1 – North West NSW	100	QNI Medium +1,000 MW QNI Large	Phase 3	Upgrades occur with QNI Medium in 2032-33 and QNI Large in 2035-36, additional upgrades may be required:				-
		+2,000 MW		2037-38	2035-36	2035-36	2040-41	
N2 – New England	300	-	Phase 3	2035-36	2030-31	2030-31	2035-36	-
N3 – Central- West Orana NSW	3,000 ⁴	Actionable ISP project Central-West Orana REZ Transmission Link project	Phase 1	2024-25 ^B	2024-25	2024-25	2024-25	2024-25
N4 – Southern NSW Tablelands	1,000	-	-	-	-	-	-	-
N5 – Broken Hill	-	-	-	-	-	-	-	-
N6 – South West NSW	-	Project EnergyConnect +600 MW	Phase 2	Upgrades occur with Project EnergyConnect in 2024-25				2024-25
N7 – Wagga Wagga	-	HumeLink +1,000 MW	Phase 2	Upgrades occur with HumeLink in 2025-26				-26
N8 – Tumut	-	HumeLink +2,040 MW (Hydro generation)	Phase 2	Upgrades occur with HumeLink in 2025-26				-26
N9 – Cooma- Monaro	200	-	-	2033-34	2031-32	2033-34	2037-38	-

Table 2 New South Wales REZ report card

A. This includes transmission capacity from Central-West Orana NSW REZ development with NSW Government.

B. Timed with expected completion of Central-West Orana REZ

A5.3.2.1 Central-West Orana REZ

Central-West Orana REZ, previously known as Central West REZ, has been identified by the New South Wales Government as the state's first pilot REZ⁸. The REZ is expected to provide 3,000 MW of transmission hosting capacity within the Central-West Orana region of the state by the mid-2020s.

Construction of the REZ is expected to begin in 2022. In May 2020, the New South Wales Department of Planning, Industry and Environment called for renewable energy, energy storage, and emerging energy project proponents to register their interest in being part of the first pilot REZ⁹. The registration of interest closed in the first week of June 2020, attracting 113 registrations of interest for projects, totalling approximately 27 GW¹⁰.

⁸ New South Wales Government, at <u>https://energy.nsw.gov.au/renewables/renewable-energy-zones.</u>

⁹ New South Wales Government, at <u>https://energy.nsw.gov.au/renewables/renewable-energy-zones</u>.

¹⁰ New South Wales Government, at <u>https://energy.nsw.gov.au/renewable-energy-zone-sparking-investment-boom</u>.

AEMO identifies the transmission augmentation Central-West Orana REZ Transmission Link as an actionable ISP project which is required to support generation with the Central-West Orana REZ. The transmission network¹¹ includes a 500 kV (or 330 kV) loop which traverses the Central-West region. The final transmission augmentation topology will depend on secured generator investment interest within the zone as part of a generator contracting process to be run by the New South Wales Government.

The development is expected to cost approximately \$450 to \$850 million. For more information please refer to Appendix 3.

A5.3.2.2 North West New South Wales

Development in North West New South Wales is supported by QNI Medium and QNI Large upgrade proposals. The additional capacity provided by QNI is utilised immediately in the Central and High DER scenarios. Under the Step and Fast Change scenarios, the network between Boggabri and Wollar/Bayswater would need to be brought forward a year to accommodate the increase in generation projected.

As projected VRE in the North West New South Wales REZ increases beyond 2,000 MW from 2035-36, seen in Figure 6, the utilisation of storage can minimise the network build in this area. As generation further increases in North West New South Wales and New England REZs, a new 500 kV connection between the two REZs is proposed to share network capacity. North West New South Wales is predominately a solar zone, whereas New England is predominately a wind zone with interest for pumped hydro generation. The sharing of these resources across the network augmentation would allow for better transmission utilisation and reduction in transmission build. Table 3 details the proposed development for North West New South Wales.

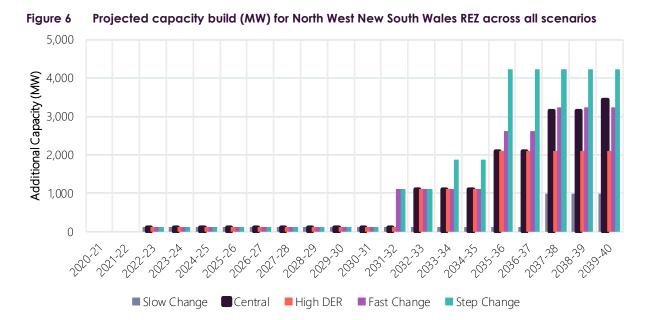
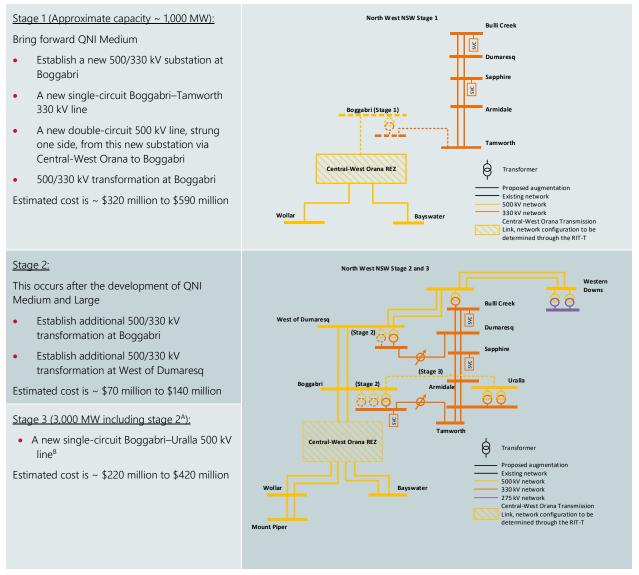



Figure 6 shows the projected VRE in this REZ for each scenario's least-cost development path.

¹¹ Augmentation details to be developed as part of the RIT-T.

Table 3 North West New South Wales REZ network expansion

A. This includes parts of QNI Medium and Large that were not constructed in Stage 2.

B. Common with both New England and North West New South Wales REZs.

North West New South Wales REZ network expansion preparatory activities

The transmission infrastructure required to integrate the North West New South Wales REZ with the greater transmission network is identified as a future ISP project. This project would reduce costs, and enhance system resilience and optionality. It is not yet 'actionable' under the new ISP Rules, but is expected to be so in the future and is part of the optimal development path.

AEMO requires TransGrid to carry out preparatory activities for the North West New South Wales REZ network expansion including publishing a report on the outcome of these activities by 30 June 2021. The preparatory activities required include:

- Preliminary engineering design.
- Desktop easement assessment.
- Cost estimates based on preliminary engineering design and route selection.
- Preliminary assessment of environmental and planning approvals.
- Appropriate stakeholder engagement.

The following REZ parameters should be considered when undertaking preparatory activities.

REZ design parameter	North West New South Wales
Geographical location	See North West New South Wales scorecard in section A5.4.2.
Notional REZ hosting capacity	Stage 1: 1,000 MW Stage 2: 3,000 MW (including stage 1) Stage 3: >5,000 MW (including stage 1 and 2)
Forecast expansion in the least-cost development paths	See Figure 6
Proposed connection points between the REZ and the rest of the shared network	The network between Dumaresq/West of Dumaresq and Tamworth and the network between Bayswater and Wollar.
Delivery date for the preparatory activities and report	30 June 2021
Additional matters for consideration	Consideration should be given to the possibility for the QNI interconnector to traverse through this REZ and assist with connection of generation along the path. Considerations should also be given to the possible development of New England REZ. See Appendix 3 for further details.

Table 4 North West New South Wales REZ parameters

A5.3.2.3 New England REZ

The New South Wales Electricity Strategy¹² sets out a plan to prioritise three REZs – the New England REZ, South West New South Wales REZ, and Central-West Orana REZ – which will become a driving force to deliver affordable energy into the future.

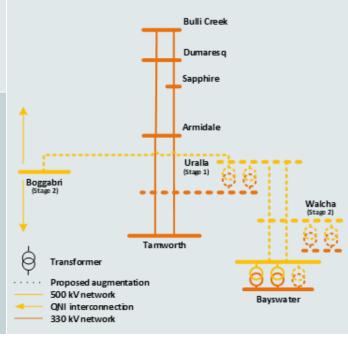
Across all scenarios, except for Slow Change, large transmission augmentation is required to connect the projected VRE in New England to the Sydney load centre. The proposed future ISP project for the New England REZ is summarised in Table 5. Additional to the expansion noted in Table 5, as VRE within North West New South Wales, New England and Central-West Orana increases and coal retirements occur in New South Wales, network augmentation will be required between Bayswater, Newcastle and Sydney. The 500 kV network between Bayswater and Eraring would need to be linked to alleviate congestion on the 330 kV network between Tamworth, Newcastle and Sydney. Details of this required augmentation are discussed more in Appendix 3, under the ISP project Reinforcing Sydney, Newcastle and Wollongong Supply.

Table 5 New England REZ network expansion

Stage 1^A (Approximate 3,000-4,000 MW^B):

- Uprate Armidale–Tamworth 330 kV lines 85 and 86
- Establish a new Uralla 500/330 kV substation
- Turn both Armidale–Tamworth 330 kV lines 85 and 86 into Uralla
- A new double-circuit Uralla–Bayswater 500 kV line
- Two 500/330 kV 1,500 MVA Uralla transformers
- Additional reactive support

¹²New South Wales Government, New South Wales Electricity Strategy, at <u>https://energy.nsw.gov.au/media/1921/download</u>.


- Establish a new 500/300 kV substation at Walcha
- Cut Uralla–Bayswater 500 kV lines into Walcha
- Two 500/330 kV 1,500 MVA Walcha transformers
- One 500/330 kV 1,500 MVA Bayswater transformer

Estimated cost is ~ \$720 million to \$1,330 million

Stage 2:

- A new single-circuit Boggabri–Uralla 500 kV line^c
- Estimated cost is ~ \$220 million to \$420 million

Approximate capacity: 4,000-5,000 MW including stage 1^D

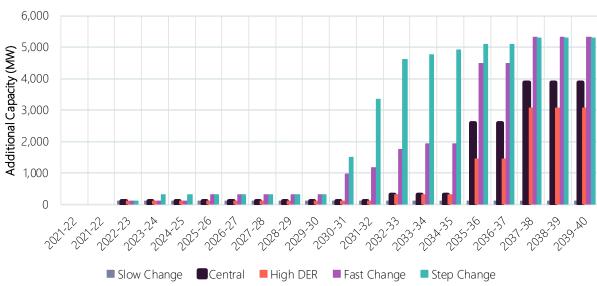
- A. In addition to the REZ expansion listed in Table 5, this assumes that the network augmentation between Bayswater, Newcastle and Sydney is in place. This augmentation is required with the increase of VRE in North West New South Wales, New England, and Central-West Orana New South Wales and due to retirement of coal generation.
- B. Capacity is dependent on the development of QNI Medium and Large, resource diversity, and network upgrades between New England and the Sydney load centre. Storage is also utilised to reduce network build requirements and store excess energy.
- C. Common between North West New South Wales REZ and New England REZ.
- D. Capacity is dependent on development of North West New South Wales REZ and QNI flow, resource diversity, and the amount of storage to connect in this area. Storage was assumed for this zone. Options to increase this to 8,000 MW to match the target from the New South Wales Government will be explored in the preparatory activities for QNI Medium and Large, North West New South Wales REZ, and New England REZ. See Appendix 3 for further details.

The delivery of New England network expansion is required from mid-2030s in the Central, and High DER scenarios and 2030-31 in the Step and Fast change scenarios when VRE projections exceed 300 MW (see Figure 7). The timing of the New England network expansion may be accelerated by the New South Wales Government as part of its announced policy to support development of VRE in this REZ¹³. On 10 July 2020, the New South Wales Government announced a \$79 million plan to develop a REZ, of 8,000 MW size, in this region. TransGrid has also announced, just before release of this ISP, a proposed approach to further accelerate the development of this REZ.

New England REZ network expansion preparatory activities

The transmission infrastructure required to integrate the New England REZ with the greater transmission network is identified as a future ISP Project (see Appendix 3). It is not yet 'actionable' under the new ISP Rules, but is expected to be so in the future and is part of the optimal development path.

AEMO requires TransGrid to carry out preparatory activities for the New England REZ network expansion including publishing a report on the outcome of these activities by 30 June 2021.


The following REZ parameters should be considered when undertaking preparatory activities.

¹³ NSW Government. New England to light up with second NSW Renewable Energy Zone, available at <u>https://www.nsw.gov.au/media-releases/new-england-to-light-up-second-nsw-renewable-energy-zone</u>.

Table 6 New England REZ parameters

REZ parameter	New England
Geographical location	See New England scorecard in section A5.4.2.
Notional REZ hosting capacity	Stage 1: 3,000-4,000 MW Stage 2: 8,000 MW (including stage 1)
Forecast expansion in the least- cost development paths	See Figure 7
Proposed connection points between the REZ and the rest of the shared network	The network between Sapphire and Tamworth and the network between Liddell and Bayswater.
Delivery date for the REZ design report	30 June 2021
Additional matters for consideration	Consideration should be given to the possibility for the QNI Medium and Large interconnector to traverse through this REZ and assist with connection of generation along the path. Consideration should also be given to the REZ design for North West New South Wales. See Appendix 3 for further details.

Figure 7 shows the projected VRE in this REZ for each scenario's least-cost development path.

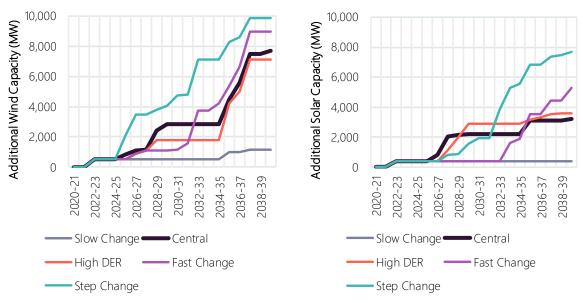


Figure 7 Projected capacity build (MW) for New England REZ across all scenarios

A5.3.3 Queensland REZ assessment

Renewable generator connections in Queensland in the 2020s are driven by the state-based QRET under the Central, High DER and Step Change scenarios. The Queensland Government has committed to a 50% renewable energy target by 2030. This target is measured against Queensland energy consumption, including renewable DER. Queensland generator connections, to meet the energy target, occur in REZs that have both existing network capacity and good quality resources.

After QRET, development of renewable generation connection is forecast to continue growing rapidly in all scenarios, except the Slow Change which does not consider this QRET, as seen in Figure 8.

Figure 8 Queensland's projected wind (left) and solar (right) capacity build (MW) across all scenarios

AEMO assessed eight candidate REZs in Queensland. The report card in Table 7 shows the transmission network upgrade timing and REZ phasing.

REZ	Existing	Hosting capacity	Priority for generation connection	Network upgrade timing				
	network capacity (MW)	increase with ISP projects		Central	Step Change	Fast	High DER	Slow
Q1 – FNQ	700	Future ISP project +800-1,500 MW	Phase 3	2037-38	2030-31	2035-36	2037-38	-
Q2 – North QLD Clean Energy Hub	-	-	-	-	-	-	-	-
Q3 – Northern Queensland	Q1+Q2+Q3 < 1,800 MWA	-	-	-	-	-	-	-
Q4 – Isaac	Q1+Q2+Q3+ Q4+Q5 < 2,000 – 2,500 MW ^B	Intra-regional augmentation future ISP Gladstone project and CQ-SQ +800- 900 MW	Phase 3	Early to mid- 2030s	Late 2020s	Early to mid- 2030s	Mid- 2030s	-
Q5 – Barcaldine	-	-	-	-	-	-	-	-
Q6 – Fitzroy	Q1+Q2+Q3+ Q4+Q5+Q6 < 2,000 - 2,500 ^c	Intra-regional augmentation future ISP CQ-SQ and Gladstone project +800- 900 MW	Phase 1 and phase 3	Early to mid- 2030s	Late 2020s	Early to mid- 2030s	Mid- 2030s	-
Q7 – Wide Bay	500	-	-	-	-	-	-	

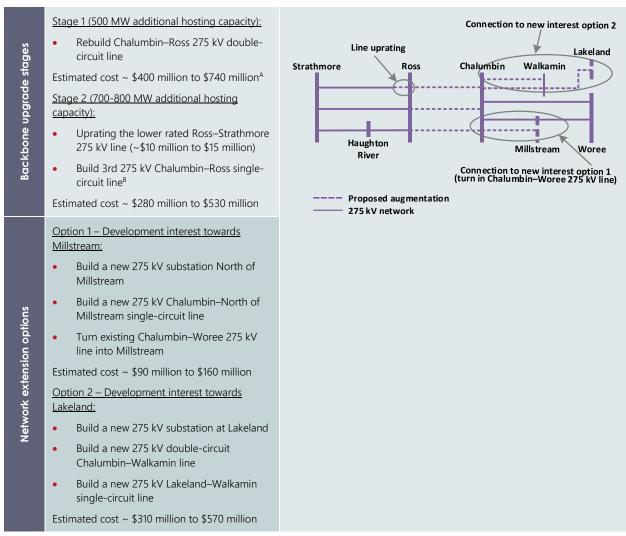
Table 7Queensland REZ report card

REZ	Existing network capacity (MW)	Hosting capacity increase with ISP projects	Priority for generation connection	Network upgrade timing				
				Central	Step Change	Fast	High DER	Slow
Q8 – Darling Downs	3,000	3,000 Future ISP Project QNI Medium + 1,000 MW QNI Large +2,000 MW	Phase 1 and phase 3	Upgrades occur with QNI Medium in 2032-33 and QNI Large in 2035-36, additional upgrades may be required:				
				>2039- 40	>2039- 40	>2039- 40	>2039- 40	-

A. This REZ is subject to group constraint, where the sum of generation developed in Q1, Q2 and Q3 should be less than 1,800 MW.

B. This REZ is subject to group constraint, where the sum of generation developed in Q1, Q2, Q3, Q4 and Q5 should be less than 2,000-2,500 MW.

C. This REZ is subject to group constraint, where the sum of generation developed in Q1, Q2, Q3, Q4, Q5 and Q6 should be less than 2,000-2,500 MW.


AEMO's REZ analysis for Queensland projects that it will be most efficient to:

- Meet the QRET with large VRE development within Fitzroy REZ and Darling Downs REZ utilising existing spare network capacity. Smaller VRE developments are projected to be efficient in Far North Queensland REZ and Isaac REZ. The QRET of 50% VRE by 2030 is forecast to require approximately 5.1 GW of additional large scale VRE capacity, above existing and committed generation projects. The first 900 MW of this is expected to come from the announced projects Broadsound Solar Farm, Cape Yorke Solar & Storage, and Macintyre Wind Farm.
- Increase network capacity in Darling Downs REZ aligned with QNI Medium and QNI Large interconnector upgrades.
- Utilise storage to decrease the size of transmission augmentations required to transfer renewable generation from Northern Queensland to the load centres.
- Prepare for the closure of coal and gas generation in Queensland in the mid-late 2030s by developing renewable generation in Far North Queensland, Isaac, Fitzroy, Wide Bay, and Darling Downs REZs.
 - With significant projected VRE development in Far North Queensland, Isaac, and Fitzroy REZs, and the retirement of Gladstone generation, strengthening of the 275 kV network is required between Bouldercombe and Calliope River, Calvale to Larcom Creek, and on the Central to Southern Queensland cut-set.
 - Additional to the augmentation above, the projected VRE development in Far North Queensland requires strengthening of the 275 kV network between Chalumbin and Strathmore via Ross and network expansion to areas of high renewable interest.
 - AEMO requires Powerlink to carry out preparatory activities for the Gladstone Grid Reinforcements and for the Central to Southern Queensland (CQ-SQ) transmission project.

A5.3.3.1 Far North Queensland

Far North Queensland has excellent wind resources. There is some existing spare network capacity to connect utility-scale wind generation before upgrades are required. This spare capacity is location-specific within the REZ and system strength remediation is likely for connection of generation in this area.

Although the cost of upgrades is high in this REZ, it has a good capacity factor and high diversity of wind resources with other REZs. Its development is timed in the least-cost development paths in the mid to late-2030s, or as possibly as early as 2031 if the Step Change scenario. The network upgrades are required when VRE in this zone exceeds 700 MW. Table 8 shows two possible options, depending on the area within the REZ. Option 1 is to strengthen the network for wind generation in the Millstream area and Option 2 is to extend the 275 kV network towards the Lakeland area: see Appendix 3.

Table 8 Proposed network development options for Far North Queensland REZ

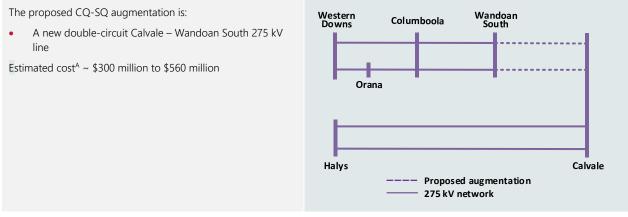
A. The rebuild of the Chalumbin–Ross 275 kV line is also required for asset replacement around mid to late 2030s.

A. A possible a fourth Ross–Strathmore–Nebo 275 kV line is required under certain scenarios.

A5.3.3.2 Fitzroy and Isaac REZs

Isaac and Fitzroy REZs have good wind and solar resources. Potential pumped hydro locations have been identified near Nebo in the Isaac REZ and near Bouldercombe and Calvale in the Fitzroy REZ.

Fitzroy has stronger connection to the major load centres in Queensland than all other candidate REZs except for Darling Downs. With high VRE projected across all scenarios, except Slow Change, storage will play a key role in firming up renewable resources, maximise the utilisation of transmission network and if strategically placed can reduce the size of the transmission augmentation needed to connect the projected renewable generation to the load centre. Pumped hydro in addition to increasing the capability to host renewable generation can also assist in alleviating minimum demand issues.


The amount of new generation that can be accommodated in the Isaac and Fitzroy REZs is largely dependent on other REZs in northern Queensland and the capacity of the Central to Southern Queensland network (CQ-SQ). As more generation is developed in northern Queensland, CQ-SQ cut-set becomes restrictive together with the 275 kV network between Bouldercombe and Calliope River. However, the retirement of thermal generation within this region will allow more VRE to be accommodated within the network capacity.

Two key transmission projects, Central to Southern Queensland transmission project and Gladstone Grid Reinforcement, have been identified as being required to accommodate the projected VRE generation in Far North Queensland, Isaac, and Fitzroy REZs. AEMO requires Powerlink to carry out preparatory activities for both projects to investigate the costs and benefits of these projects. Future stages of for the Central to Southern Queensland cut-set for further capability improvements should be investigated.

Central to Southern Queensland

The Central to Southern Queensland cut-set is defined as the power flow on the Calvale–Halys 275 kV lines, the Calliope River–Gin Gin 275 kV lines, and the Wurdong–Teebar Creek¹⁴ 275 kV line. Currently, power flow in the southerly direction is limited to prevent voltage and transient instability under fault conditions. These stability limits will need to be addressed to increase the transfer across the CQ-SQ cut-set. The need is realised when generation in the north of this cut-set exceeds 2,000-2,500 MW above the existing and committed generation. This network augmentation, detailed in Table 9, is projected to be required in the early to mid-2030s.

Table 9 CQ-SQ transmission project

A. \$432 million is used for the market modelling inputs.

Gladstone Grid Reinforcement

The need for the Gladstone Grid Reinforcement is driven by various aspects which include asset renewal, retirement of Gladstone Power Station, and high renewable generation connection in northern Queensland. Upgrading the Central to Southern Queensland cut-set, detailed in Table 10, will further highlight the need for the upgrade on this network, as addressing this limitation will shift the limitations further north under high VRE output.

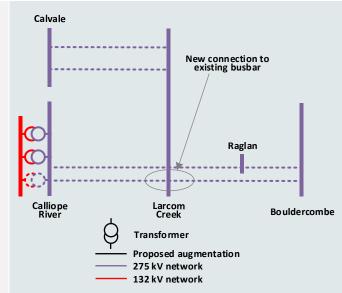

¹⁴ Soon to be Rodds Bay – Teebar Creek around 2022-23.

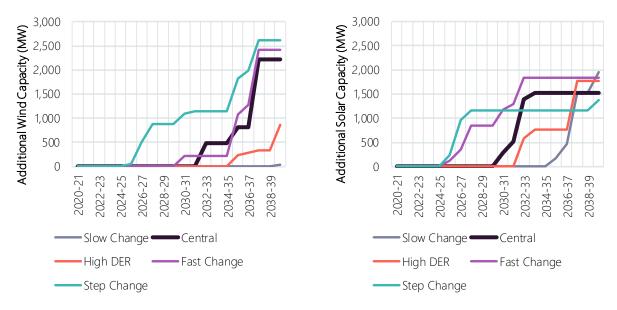
Table 10 Gladstone Grid Reinforcement transmission augmentation

Gladstone proposed augmentation is as follows:

- Rebuild the Bouldercombe–Raglan–Larcom Creek– Calliope River and the Bouldercombe–Calliope River 275 kV lines as a high capacity double-circuit lines, for a gain of approximately 700-800 MW of additional hosting capacity, required in early to mid-2030s^A
- A new double-circuit Calvale–Larcom Creek 275 kV line (required in mid-2030s)
- A third Calliope River 275/132 kV transformer (required in mid-2030s)

Estimated cost ~ \$300 million to \$560 million

A. For development of generation north of Bouldercombe, some scenarios require an additional line Bouldercombe–Larcom Creek 275 kV line.


A5.3.4 South Australia REZ assessment

South Australia connects to Victoria via two interconnectors, Heywood and Murraylink. Over the last two years, South Australia has been a net energy exporter to Victoria¹⁵. This has been driven by the continued increase in wind and solar generation in South Australia and the decrease of coal-fired generation in Victoria following the closure of Hazelwood Power Station in March 2017 and outages of the remaining coal-fired generators over the 2018-19 period.

Figure 9 shows the projected new utility solar and wind development across each scenario in the next two decades. No new wind generation is projected to be efficient in South Australia until the 2030s, except in the Step Change scenario. Similarly, no new utility-scale solar is projected to be efficient in South Australia until the 2030s except in the Step and Fast Change scenarios.

- Projected solar generation sharply increases post 2030 before settling at approximately 1,500-2,000 MW in 2035-36.
- The Riverland and Roxby Down REZs have been highlighted for this solar development; development beyond approximately 1,900 MW of solar generation would require significant transmission infrastructure investment.
- Wind generation is projected to increase post 2034-35 to replace retiring generation. South Australia is forecast to feature the highest share of renewable energy of all NEM regions in the Central scenario.

¹⁵ AEMO, 2019 South Australia Report, page 38, at <u>https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/SA_Advisory/2019/</u> 2019-South-Australian-Electricity-Report.pdf.

Figure 9 South Australia's projected wind (left) and solar (right) capacity build (MW) across all scenarios

AEMO assessed nine candidate REZs in South Australia. AEMO's REZ analysis for South Australia projects that it will be most efficient to:

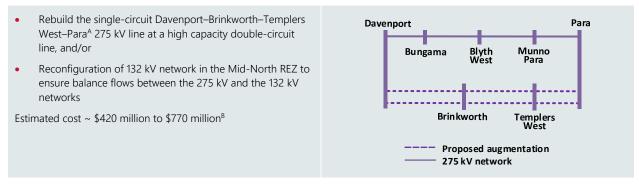
- Co-ordinate REZ development in areas supported by interconnector upgrade Project EnergyConnect and HumeLink.
- Co-ordinate REZ development in areas with good resource and existing network capacity.
- Strengthen the Mid-North 275 kV network to increase capacity to numerous REZs.

AEMO recommends timing VRE development with interconnector upgrade and recommends Riverland, Mid-North South Australia, South East South Australia, and Roxby Downs for medium to long-term large-scale VRE connections.

REZ	Existing network	Hosting capacity increase with ISP projects	Priority for generation connection	Network upgrade timing					
	capacity (MW)			Central	Step	Fast	High DER	Slow	
S1 – South East SA	55	-	Phase 3	2037-38	2030-31	2037-38	2039-40	-	
S2 – Riverland	200	Project EnergyConnect +800 MW ^A	Phase 2	2032-33	2026-27	2030-31	2037-38	2037-38	
S3 – Mid-North SA	1,000	Future ISP project Mid-North +1,000 MW ^B	Phase 3	2035-36	2035-36	2035-36	-	-	
S4 – Yorke Peninsula	-	-	-	2035-36	2037-38	2035-36	-	-	
S5 – Northern SA	1,000	-	-	-	-	-	-	-	
S6 – Leigh Creek	-	-	-	-	-	-	-	-	

Table 11	South	Australia	REZ	report	card
	000111	Auguna		cpon	c ai a

REZ	Existing network capacity (MW)	Hosting capacity increase with ISP projects	Priority for generation connection	Network upgrade timing				
				Central	Step	Fast	High DER	Slow
S7 – Roxby Downs	960 ^c	Future ISP project Mid-North ^D +1,000 MW	Phase 3	2036-38	2036-38	2035-36	-	-
S8 – Eastern Eyre Peninsula	470 ^E	-	-	-	-	-	-	-
S9 – Western Eyre Peninsula	-	-	-	-	-	-	-	-


A. Requires a minor transmission build over and above Project EnergyConnect to accommodate 800 MW. Timing associated with minor upgrade.

- B. Mid-North increases generation capacity of 1,000 MW shared by generation connections in S3, S5, S6, S7, S8 and S9.
- C. Includes capacity for new 275 kV line from Davenport to Mount Gunson South.
- D. The existing network in Mid-North can accommodate up to 1,000 MW from REZ S3, S4, S5, S6, S7, S8 and S9, if the sum of the generation from these REZs exceeds 1,000 MW, expansion of Mid-North would be required (this is referred to as the "South Australia group constraint".
- E. Includes the upgrades from the Eastern Eyre Electricity Supply RIT-T.

A5.3.4.1 Mid-North South Australia REZ

The Mid-North South Australia REZ has moderate wind and solar resources. Due to the nature of the South Australian network, VRE development in the north, west and south west of Davenport contributes to congestion in the Mid-North REZ along the 275 kV corridor between Davenport and Para. If this congestion is addressed, then capacity could be unlocked in all of these zones (S5, S6, S7, S8 and S9), assuming they can be connected to Davenport. The proposed future ISP project augmentation is detailed in Table 12.

Table 12 Mid-North South Australia Network Project

A. Depending on connection interest within Mid-North, the network augmentation may not need to extend to Davenport.

B. \$657 million is used for the market modelling inputs.

A5.3.4.2 South East South Australia

The South East South Australia REZ has moderate to good wind resources. This REZ lies on the major 275 kV path linking South Australia with Victoria (Heywood interconnector). The existing network can only effectively accommodate a small amount of additional generation. Beyond this 55 MW hosting capacity, transmission network expansions would be required to accommodate generation within this zone.

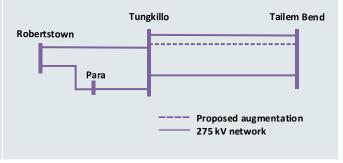

South East South Australia has been projected for VRE development greater than the current hosting capacity. This VRE development is timed in 2030-31 under the Step Change scenario and between 2037-38 and 2039-40 for the Central, Fast Change and High DER scenarios. The proposed network augmentation is highlighted in Table 13.

Table 13 South East South Australia proposed REZ development

• String the other side of the 275 kV Tailem Bend-Tungkillo line

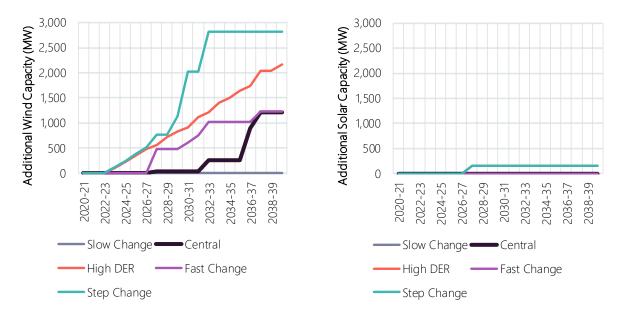
Estimated cost is ~ \$20 to \$80 million^A

- Where necessary, manage overloads with run back schemes
- Additional 275 kV transmission lines may be required between Tailem Bend and generation interest within the zone. This augmentation and costing would depend on the location of the generation.

A. Advised by ElectraNet, available in the TAPR: <u>https://www.electranet.com.au/wp-content/uploads/2019/06/2019-ElectraNet-TAPR_WEB.pdf</u>

A5.3.5 Tasmania REZ assessment

Tasmania became a net exporter of electricity via Basslink during 2017-18 and has exported more electricity each year to 2019-20. With increasing wind development, Tasmania is likely to continue this trend of energy surplus and is projected to continue to be a net exporter of energy.


In this ISP, the projected development of wind and hydro generation in Tasmania is driven by a TRET, expected to be legislated by the Tasmanian Government (considered in the Step Change and High DER scenarios). Figure 10 shows the impact of this 200% renewable energy target by 2040, in the High DER and Step Change scenarios. It also shows how, in the Step Change scenario, wind development in excess of the TRET target occurs after 2029-30. This is consistent with the Step Change characteristic to underpin rapid transformation across the energy sector.

Tasmania has relatively poor solar resources. As a result, limited utility-scale solar generation is projected in Tasmania over the next 20-year outlook.

AEMO assessed three candidate REZs in Tasmania. The report card in Table 14 shows the transmission network upgrade timing and REZ phasing. The assessment concludes the following:

- To meet TRET, VRE development occurs in all three REZs, with more than 80% of this generation projected in Tasmania Midlands by 2039-40. Just under 1.4 GW¹⁶ of new large-scale VRE is expected to be required in Tasmania in order to meet the TRET, over and above what is already committed and in service.
- Under the TRET, Tasmania's VRE would be about 150% of its needs by 2029-30, unless there were significant new local energy-intensive industry developed (such as hydrogen export). The surplus energy would have to be either exported or curtailed. Marinus Link is an efficient solution to enable the export of this surplus energy.
- Marinus Link is required under all scenarios, except for Slow Change, to facilitate the sharing of renewable energy between Tasmania and the mainland. The optimal timing to develop Marinus Link varies mainly as a response to TRET, to the saturation of Basslink, and as a result of coal retirements in the mainland. If the Step Change scenario occurs, one cable would be optimal as soon as 2028-29.
- Additional network augmentation is required under the Step Change and High DER scenarios to facilitate the transfer of generation from the Midlands REZ to Basslink and Marinus Link.
 - No network augmentations, beyond those associated with Marinus Link, have been highlighted as future ISP projects in Tasmania. The ISP model projects extensive generation build in the Midlands REZ, but the North East and North West REZs are technically similar. The future ISP augmentation in Tasmania will be investigated as generation connections become more certain.

¹⁶ 1.4 GW is the difference between what is required in the Central Scenario sensitivity with TRET and the Central scenario which does not include TRET.

Figure 10 Tasmania's projected wind (left) and solar (right) capacity build (MW) across all scenarios

Table 14 Tasmania REZ report card

REZ	Existing network	Hosting capacity increase with ISP	Priority for	Network upgrade timing					
	capacity (MW)	projects	generation connection	Central	Step	Fast	High DER	Slow	
T1 – North East Tasmania	250	-	Phase 1 ^A	-	-	-	-	-	
T2 – North West Tasmania	340	Marinus Link ^B +600 MW ^C stage 2	Phase 1 ^A	Timed with Marinus Link, timing varies across scenarios however VRE projections does not utilise capacity.					
T3 – Tasmania Midlands	480	Marinus Link +540 MW ^D stage 1	Phase 1 ^A and phase 2	Timed with Marinus Link, timing and stages varies acr scenarios. Additional to the capacity supported by Marinus Link additional augmentation is required:				rted by	
				-	2030-31	-	2037-38	-	

A. Phase 1 classification is subject to TRET becoming legislated.

B. Marinus Link stage 1 refers to the first 750 MW HVDC interconnector between Victoria and Tasmania and the 220 kV network augmentation within Tasmania to support it Stage 2 refers to the second 750 MW HVDC interconnector and the 220 kV augmentations within Tasmania to support it.

C. Increase hosting capacity in this REZ is supported by the 220 kV transmission network between Burnie – Hampshire – Staverton, as part of the Marinus Link Stage 2

D. Increase hosting capacity in this REZ supported by the 220 kV transmission network between Burnie – Sheffield – Palmerston, as part of Marinus Link stage 1.

A5.3.6 Victoria REZ assessment

VRE connections in Victoria in the first decade are projected to be driven by high quality wind and solar resources and the state-based renewable energy target. The VRET mandates 25% of the region's generation be sourced from renewable sources by 2020, 40% by 2025 and 50% by 2030¹⁷. This target is measured against Victorian generation, including renewable DER.

¹⁷ Victoria State Government, Environmental, Land, Water and Planning, Victoria Renewable Energy Target 2018-2019 Progress Report, at <u>https://www.energy.vic.gov.au/_data/assets/pdf_file/0030/439950/Victorian-Renewable-Energy-Target-2018-19-Progress-Report.pdf</u>.

Gippsland REZ has good hosting capacity and significant wind generation interest, including a large offshore wind farm of 2,000 MW. Development within this REZ could leverage the existing Latrobe Valley to Melbourne 500 kV and 220 kV network. The ISP does not, however, find the need to develop large quantities of wind in this REZ in the planning period. If VNI West is accelerated, then it is optimal to develop VRE in other REZs with higher quality wind resources.

In most scenarios, after 2029-30, there is little to no increase in projected renewable generation in Victorian REZ until the mid-2030s, as seen in Figure 11. The proposed VNI West interconnector, when delivered, increases capacity for additional connection of renewable generation in Victoria in Western Victoria REZ, and in the Murray River REZ or the Shepparton REZ depending on the route selection.

Figure 11 Victoria's projected wind (left) and solar (right) capacity build (MW) across all scenarios

AEMO assessed six candidate REZs in Victoria. The report card in Table 15 shows the transmission network upgrade timing and REZ phasing.

AEMO's REZ analysis for Victoria projects that it will be most efficient to meet the VRET by:

- Utilising spare network capacity with the development of renewable generation in South West Victoria and Central North Victoria REZs, and in Gippsland REZ if VNI West is not delivered by 2030.
- Utilising network capacity within the Western Victoria REZ introduced by the Western Victoria Transmission Network Project and in the Murray River REZ supported by actionable Project EnergyConnect.
- Co-ordinating further REZ development in areas supported by VNI West.

REZ	Existing	Hosting capacity increase with ISP	Priority for	Network upgrade timing					
	network capacity (MW)	projects	generation connection	Central	Step	Fast	High DER	Slow	
V1 – Ovens Murray	300	-	-	-	-	-	-	-	
V2 – Murray River	-	Project EnergyConnect +380 MW	Phase 2	2024-25	2024-25	2024-25	2024-25	2024-25	
V3 – Western Victoria	450 ⁴	VNI West +1,000 MW	Phase 1 and phase 2		vith Westerr n 2025-26 a				
V4 – South West Victoria	750	-	Phase 1	-	2036-37	2040-41	-	-	
V5 – Gippsland	2,000	-	-	-	-	-	-	-	
V6 – Central North Victoria	800	VNI West (Option 6) +2,000 MW	Phase 1 and phase 2	Upgrades	occur with	VNI West	-	-	

A. Includes capacity gained after Western Victoria Transmission Network Project.

A5.3.6.1 Western Victoria REZ

Western Victoria REZ is identified for VRE development in phase 1 and phase 2, supported by the committed Western Victoria Transmission Network Project and the actionable VNI West project. Currently, generation interest within the Western Victoria REZ exceeds the capacity of the transmission network. This means generation is being constrained due to thermal and stability limitations.

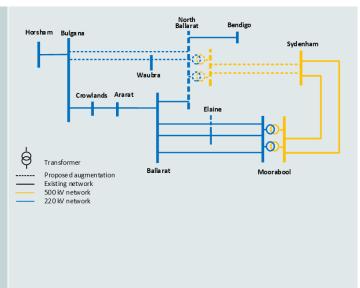
The VRE development in phase 1 is the Western Victoria Transmission Network Project, which seeks to reduce the emerging constraints on the network, unlock renewable energy resources, reduce congestion, and improve the productivity of existing assets.

The Western Victoria Transmission Network Project, detailed in Table 16, is a committed project. The short-term augmentation is expected to be complete by 2020-21, and the medium-term augmentation is currently on track to be commissioned in 2025-26.

Connections in this REZ should be monitored and possibly managed with a control scheme if necessary – for example, it may be necessary in the future to implement a run back scheme.

There are currently automated control schemes in the area, and their interactions need to be carefully monitored. Regular review all automated control schemes in the area may be required to ensure their operation can provide a secure network following 220 kV line contingencies as more generation connects within Western Victoria.

Table 16 Committed Western Victoria Transmission Network Project


<u>Stage 1:</u>

The installation of wind monitoring equipment and the upgrade of station limiting transmission plant on the:

- Red Cliffs-Wemen 220 kV line
- Wemen–Kerang 220 kV line
- Kerang–Bendigo 220 kV line
- Moorabool–Terang 220 kV line
- Ballarat–Terang 220 kV line

Stage 2:

- A new substation north of Ballarat^A
- A new 500 kV double-circuit transmission line from Sydenham to the new substation north of Ballarat^A
- A new 220 kV double-circuit transmission line from substation north of Ballarat to Bulgana (via Waubra)
- 2 x 500/220 kV transformers at the new substation north of Ballarat^A
- Cut-in the existing Ballarat–Bendigo 220 kV line at a new substation north of Ballarat
- Moving the Waubra Terminal Station connection from the existing Ballarat–Ararat 220 kV line to a new 220 kV line connecting the substation north of Ballarat to Bulgana
- Cut-in the existing Moorabool–Ballarat No. 2 220 kV line at Elaine Terminal Station

A. New terminal station north of Ballarat which will be established through Western Victoria Transmission Network Project

Figure 12 Projected capacity build (MW) for Western Victoria REZ across all scenarios

A5.4. REZ scorecards

A5.4.1 REZ scorecard details

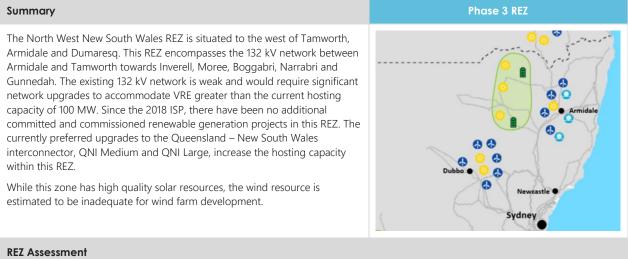
The REZ scorecards provide an overview of the characteristics of each REZ so an assessment can be made as the development opportunities arise. The following explains the criteria in the scorecards.

REZ Report Card Detail	s								
REZ Assessments									
REZ Phases		REZs are classified into phases (see section A5.3.1). If a REZ has more than one phase, the earliest applicable phase is used. REZ phases have been colour coded:							
	Phase 1	Connecting renewables to support government policy							
	Phase 2	Connecting renewables in areas supported by actionable ISP projects							
	Phase 3	Connecting	g renewables i	n areas support	ed by future IS	P projects			
	N/A	REZ is not l	isted for a REZ	Z phased develo	opment.				
Renewable Resources									
	Indicative generat	ion is shown b	ased on the re	esource availab	ility:				
	Wind	Sola	r Hy	/dro Geo	othermal	Battery			
Map Legend		-ò							
	The green shading area of the Renew			aphic					
	Solar average cap	Solar average capacity factor based on 9 reference years.							
	≥30%	≥28%	≥26%	≥24%	≥22%	<22%			
	A	В	С	D	E	F			
	Wind average cap	acity factor ba	sed on 9 refer	ence years.					
Resource Quality	≥45%	≥40%	≥35%	≥30%	<30%				
	A	В	С	D	E				
		Correlation between demand describes whether the REZ resources are available at the same time as the regional demand, using a statistical correlation factor. A higher correlation represents that the resource is more available at regional demand.							
	the resource is mo	ore available at	regional den	anu.					

	A	В	С	D	E				
Renewable Resources		otential REZ size in I cense and commur source limit.							
Climate Hazard									
		temperature score ears 2030 and 2050		ne projected 1 in	10-year maximu	ım temperatures ^A			
	Score	Description							
	А	Once in 10-year n degrees Celsius fo							
	В	Once in 10-year n degrees Celsius fo			ons range betwe	een 30 and 44			
Temperature	С	Once in 10-year maximum temperature projections range between 32 and 48 degrees Celsius for the years 2030 and 2050.							
	D	Once in 10-year maximum temperature projections range between 34 and 50 degrees Celsius for the years 2030 and 2050.							
	E	Once in 10-year maximum temperature projections range between 44 and 52 degrees Celsius for the years 2030 and 2050.							
		10-year maximum ter ustrial Research Orgar				Scientific and			
	danger	bushfire score is ba days ^B around the ye g (a dominant inpu	ears 2030 and						
	Score	e Description							
	A	Model projections associate less than half the days of a year with high fire danger days and a probability of zero large fires in 20 years.							
Durach firm	В	Model projections associate less than half the days of a year with high fire danger days and a probability of 1 large fire in 20 years.							
Bushfire	с	Model projections danger days and				rith high fire			
	D	Model projections danger days and							
	E	Model projections danger days and				ith high fire			
		rest Fire Danger Index high" fire danger day		/ day where the FFI	DI is greater than 1	2.			

Variable Generation Outlook

Valiable Generation Out										
Scenario	Long term market simulations of different scenarios named Central, Slow Change, Fast Change, Step Change and High DER.									
Existing/Committed Generation	The existing and committed generation as of the 31/01/2020. Solar and wind generation is captured for existing and committed generation >10 MW.									
Projected Variable Generation	Long-term market simulations projected variable generation outlook for solar and wind generation at different times intervals across all scenarios. All VRE projections are based on the least-cost development paths except for the Slow Change scenario. The Slow Change scenario is based on the transmission investment with the lowest regret, which includes all interconnectors that are developed in every other scenario with a fixed timing.									
Storage										
	Storage, in each dispatchable depth category: shallow, medium and deep, has been projected at state level. The REZ scorecards' use the state level storage projections to suggest storage at a RE level in proportions that would benefit the network taking into consideration pumped hydro interest in the REZs.									
Shallow Storage	Shallow storage includes VPP battery and 2-hour large-scale batteries. The value of this category of storage is more for capacity, fast ramping, and FCAS (not included in AEMO's modelling) than is for its energy value. For the purpose of the REZ scorecards, only 2 hour battery is captured.									
Medium Storage	Medium Storage includes 4-hour batteries, 6-hour pumped hydro, 12-hour pumped hydro, and the existing pumped hydro stations, Shoalhaven and Wivenhoe. The value of this category of storage is in its intra-day shifting capability, driven by demand and solar cycles.									
Deep Storage	Deep storage includes 24-hour pumped hydro and 48-hour pumped hydro, and includes Snowy 2.0 and Tumut 3. The value of this category of storage is in covering VRE 'droughts' (that is, long periods of lower-than-expected VRE availability), and seasonal smoothing of energy over weeks or months.									
Network Capability										
Hosting Capacity (MW)	The approximate scale of additional generation (MW) that can be transported from the REZ to the load centre considering network limitations (excluding system strength) and REZs' current and committed generation as of the 31/01/2020. Diversity of resources and storage can affect the hosting capacity and these assumptions change between scenarios. For any REZ and interconnector augmentation options, the figure listed as the hosting capacity is the increase in hosting capacity above the current hosting capacity provided by the augmentation.									
Loss Robustness Factors	The loss factor robustness is the sensitivity of Marginal Loss Factor (MLF) to additional generation inside the REZ. The current loss factor robustness is calculated for the year 2022. The future loss factor robustness is calculated in 2041 for future network augmentation unless staging requires a assessment of an earlier year. Loss robustness factors are only calculated for augmentations built in the optimal development path, improvement of MLF robustness is linked to an uncertain investment. The measure used is the additional generation (MW) that can be added before the MLF changes by -0.05:									
	≥1000 ≥800 ≥600 ≥400 ≥200 <200									
	A B C D E F									
Interconnector Augmentations	Recommended interconnector augmentations of the optimal development path are presented where it may influence the REZ network hosting capacity. Where appropriate, alternative interconnector options including route variations are presented. See Appendix 3 and the Input a Assumptions Workbook ¹⁸ for more information on transmission projects.									


¹⁸ AEMO. *Input and Assumptions Workbook*, available at <u>https://aemo.com.au/energy-systems/major-publications/integrated-system-plan-isp/2020-integrated-system-plan-isp/2019-isp-database</u>.

Possible REZ Augmentations	Possible REZ augmentations that can increase the hosting capacity of the REZ.
ISP Development	Lists the scenarios that required the REZ augmentation to increase the hosting capacity of the REZ to accommodate projected growth in variable generation within the REZ.
System Strength	
Available Fault Level (MVA)	Captures the approximate available fault level in MVA for the Central and Step Change scenarios for 2030 and 2035 assuming minimum fault level node requirements continue to be maintained by the TNSP. Committed system strength projects have been considered for future years. The available fault level calculations have been performed in order to indicate when fault level remediation by connecting generators may be required in the REZ. A negative value indicates remediation may be required, with the approximate amount required detailed in the 'System Strength remediation' section. An assumed short circuit ratio requirement of 3 has been used for these calculations, which may be considered conservative especially for the later years. The methodology used for calculation the available fault level can be found in Appendix 7. This is only a first pass review and does not negate the need for individual impact assessments as part of standard generator connection processes. Investors and developers should conduct their own due diligence to understand how technical requirements might influence their connection.
System Strength Remediation	 Approximate system strength remediation was calculated to restore the available fault level in the REZ to a positive value using synchronous condensers. Where synchronous pumped hydro has been planted in the REZ, it is expected this could form part of the system strength remediation. If alternative services, like synchronous generation is available for contract at reasonable price, it could offset the need for synchronous condensers or other forms of system strength remediation listed in this section. In the NEM, the division of responsibilities for the provision of system strength is: AEMO is required to determine the fault level requirements across the NEM and identify whether a fault level shortfall is likely to exist now or in the future. The System Strength Requirements Methodology¹⁹ defines the process AEMO must apply to determine the system strength requirement at each node. The local TNSP is required to provide system strength services to meet the minimum three phase fault levels at relevant fault level nodes if AEMO has declared a shortfall.
	• A connecting generator is required to implement or fund system strength remediation, such that its connection (or altered connection) does not have an adverse impact on system strength, assessed in accordance with AEMO's system strength impact assessment guidelines.
	Investors and developers should conduct their own due diligence to understand how technical requirements might influence their connection. See Appendix 7 for more information on system strength.

¹⁹ AEMO. System Strength Requirements Methodology, at <u>http://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/System-Security-</u> <u>Market-Frameworks-Review/2018/System_Strength_Requirements_Methodology_PUBLISHED.pdf</u>.

New South Wales REZ scorecards A5.4.2

N1 – North West New South Wales

Phase 3	

Development of North West NSW REZ is projected in phase 3. Development in this region could be supported by QNI Medium and Large augmentations. The additional capacity provided by QNI Medium and QNI Large project is utilised immediately in the Central and High DER scenarios, and only in the late 2030s in the Slow Change scenario. Under the Step Change and Fast Change scenarios, the network between Wollar and Boggabri of QNI Medium would need to be brought forward a year to accommodate the increase in generation projected.

Renewable Resources

Resource	Solar			Wind			
Resource Quality	A			D			
Renewable Potential (MW)	6,500			0			
Demand Correlation	2020	2030	2040	2020	2030	2040	
Demana Correlation	E	E	E	D	D	D	

Climate Hazard

Temperature Score	D	Bush Fire Score	E

	Solar PV (MW)			Wind (MW)						
	Existing/		Projected Existing/	Projected						
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40		
Central		100	1,100	3,450						
Step		100	1,850	4,200	There are no existing wind generators in this REZ, a wind projects progressed to the anticipated or com level in last 2 years. The modelling outcomes, for					
Fast	56	100	1,100	3,250						
High DER		100	1,100	2,100	scenarios, did not project additional wind gener this REZ.		eneration for			
Slow		100	100	1,000						

Storage

	Suggested Storage for REZ (MW)								
		Depth		Projected					
			2029-30	2034-35	2039-40				
ISP modelling has generally demonstrated benefits in co-locating solar generation with shallow-to- medium storages. There is a large projection of solar generation for this REZ which makes it a great candidate for storage. Locating storage within this REZ will firm up supply within the North West New South Wales REZ and reduce the scale	Central		0	0	50				
	Step		0	0	0				
	Fast	Shallow	0	0	0				
	High DER		0	0	0				
of network augmentations required to transfer this energy to the load centres.	Slow		0	0	0				
Storage development in this REZ can support firm energy exports to both New South Wales and	Central		0	200	200				
Queensland load centres via the proposed development of the QNI upgrades.	Step		0	0	0				
	Fast	Medium	0	300	300				
	High DER		0	0	0				
	Slow		0	0	0				

Existing Ne

Description	Approximate Existing Hosting Capacity	Loss Factor Robustness
The existing 132 kV network connects Armidale to Tamworth via Inverell, Moree, Narrabri, Boggabri East and Gunnedah.	100 MW	F

Associated Interconnector Augmentations

Description	Additional Hosting Capacity	Loss Factor Robustness
QNI Medium Option 2E (Preparatory Activities Required): A new 500 kV interconnector from Western Downs in Queensland via Boggabri to a new substation near Wollar in New South Wales.	+1,000 MW	A
QNI Large Option 3E (Preparatory Activities Required): A second 500 kV interconnector from Western Downs in Queensland via Boggabri to the new substation near Wollar in New South Wales.	+1,000 MW	A

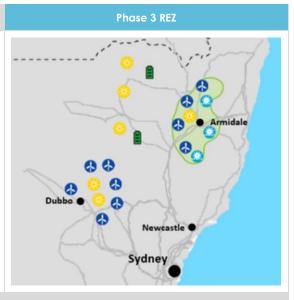
Possible REZ Augmentations

Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness
Augmentation Option 1 (Bring forward of QNI Medium):				
Parts of QNI Medium are required earlier under the Step and Fast scenarios. These augmentations involve:				
• Establish a new 500/330 kV at Boggabri	+1.000 MW	Part of ONI	Fast, Step Change	_
 A new Boggabri–Tamworth 330 kV line (for sharing capacity with New England and allowing solar generation access to possible pumped hydro) 	. ,,		Change	
• Establish a new substation on Bayswater–Wollar 500 kV line				

	A new double-circuit 500 kV line from this new substation to Boggabri				
•	500/330 kV transformation at Boggabri				
Aug	mentation Option 2:			Not identified	
•	Establish a new 330 kV at Gunnedah	1250 1444	\$390 million	as being	
•	A new double-circuit Gunnedah–Tamworth 330 kV line	+1,350 MW	to \$730 million	required under any ISP	-
•	A new double-circuit Gunnedah–Wollar 330 kV line			scenario	
Aug	mentation Option 3 (if augmenting before QNI):				
Nort	augmentation is required to connect generation within h West New South Wales and New England, and opens for er extensions on QNI along either the west or eastern path:				
•	Establish a new 500/330 kV substation at Uralla			Not identified as being required under any ISP scenario	
•	Establish a new 330 kV substation just west of Gunnedah		\$1,340 million to \$2,500 million		
•	Turn both Armidale–Tamworth 330 kV lines into Uralla				
•	A new single-circuit 500 kV line from Uralla to Bayswater	+4,000 MW ^A			-
•	500/330 kV transformation at Uralla and new substation near Gunnedah				
•	Build a new 500 kV Uralla-west of Gunnedah-Wollar single- circuit line				
•	Build a new 330 kV Uralla–Tamworth–Liddell single-circuit line				
•	Build a new 330 kV west of Gunnedah–Tamworth double- circuit line				
Aug	mentation Option 4:				
Addi	tional to QNI Medium and Large, the following is required:			Central, High	
	Two 500/330 kV transformers at Boggabri	+3,000 MW ^C	\$300 million to \$550 million	DER, Fast and Step Change	A
•		1 3,000 10100		Step Change scenarios	
•	500/330 kV transformer at West of Dumaresq		minion	Sectionios	
•	500/330 kV transformer at West of Dumaresq Connection to New England REZ with a 500 kV line between Boggabri and Uralla ⁸ .		minori	(2035-36)	
• • A. B. C.	Connection to New England REZ with a 500 kV line	and New England,	which varies across	(2035-36)	
• A. B. C.	Connection to New England REZ with a 500 kV line between Boggabri and Uralla ^B . Additional hosting capacity gained in North West NSW and New Engla Timing on 500 kV line is dependent on build in both North West NSW	and New England,	which varies across	(2035-36)	
• A. B. C.	Connection to New England REZ with a 500 kV line between Boggabri and Uralla ^B . Additional hosting capacity gained in North West NSW and New Engla Timing on 500 kV line is dependent on build in both North West NSW Depends on augmentation for New England, New England REZ genera	and New England,	which varies across	(2035-36)	2034-35
• • B. C. Ava	Connection to New England REZ with a 500 kV line between Boggabri and Uralla ^B . Additional hosting capacity gained in North West NSW and New Engla Timing on 500 kV line is dependent on build in both North West NSW Depends on augmentation for New England, New England REZ genera	and New England, ation and QNI flows	which varies acros	(2035-36) s scenarios.	2034-35 300

System Strength Remediation Augmentation

	Description	Date Required	Cost
Central	Remediation not required with forecast level of VRE.	-	-
Step	Establish 2 x 250 MVAr synchronous condensers.	2033-34	\$95 million to \$120 million


N2 - New England

Summary

The New England REZ, previously known as Northern New South Wales Tablelands, is identified by the New South Wales government as one of three potential priority renewable energy zones in the New South Wales Government Electricity Strategy released in 2019.

This REZ has moderate to good wind and solar resources in close proximity to the 330 kV network. Interest in the area includes large scale solar and wind generation as well as pumped hydro generation. The connection of additional generation in this zone may compete with generation from Queensland via the New South Wales – Queensland 330 kV interconnector.

Three of the larger Queensland to New South Wales interconnector options increase the capacity for the connection of renewable energy within this zone.

REZ Assessment

Phase 3

Expansion of the New England REZ is optimally timed in Phase 3 (or earlier if the New England REZ development is accelerated through NSW government policy). This REZ is supported by a future ISP project, New England REZ network expansion, to connect the renewable generation to the load centre.

Renewable Resources

Resource	Solar		Wind			
Resource Quality	С		С			
Renewable Potential (MW)	3,500		7,400			
	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40
Demand Correlation	D	E	E	D	D	С

Climate Hazard

Temperature Score	С	Bush Fire Score	E

	Solar PV (MW)			Wind (MW)					
	Existing/		Projected		Existing/	Projected			
	committed 2029-30 2034-35 2039-40 committed	2029-30	2034-35	2039-40					
Central		100	100	100		0	200	3,750	
Step		300	300	300		0	4,600	5,000	
Fast	20	300	300	300	443	0	1,600	5,000	
High DER		100 300 300	0	0	2,750				
Slow		100	100	100	-	0	0	0	

Storage

Given the large projected solar and wind generation for the New England, North West New South Wales and Darling Downs REZs, there is a need for large scale storage under all scenarios except Slow Change. The development of pumped hydro and battery storage within the New England and North West New South Wales REZs could assist in not only firming up the VRE but also deferring or reducing the scale of transmission augmentation required. Storage has been suggested for this region under all scenarios except for the Slow Change scenario whereby little VRE is projected in the REZ.

New England REZ has good potential for pumped hydro. The pumped hydro resources are situated close to the 330 kV network, just east of Armidale and Uralla. There are also pumped hydro resources along the Armidale– Coffs Harbour 330 kV line.

In April 2020, on behalf of the Australian Government, ARENA announced that it is providing \$951,000 to the Oven Mountain Pumped Hydro Project to undertake a study to analyse the benefits that 600 MW/7,200 MWh pumped hydro energy would have on the New England REZ²⁰.

	Suggested Storage for REZ (MW)							
	Projected							
	Depin	2029-30	2034-35	2039-40				
Central		0	0	1,150				
Step	Medium	0	200	350				
Fast		0	0	500				
High DER		0	0	350				
Slow		0	0	0				
Central		0	0	0				
Step		0	0	1,100				
Fast	Deep	0	0	0				
High DER		0	0	0				
Slow		0	0	0				

Existing Network Capability

Description	Approximate Existing Hosting Capacity	Loss Factor Robustness
The existing 330 kV network can support around 300 MW of new connections in and around Tamworth 330 kV substation.	300 MW	А

Associated Interconnector Augmentations

Description	Additional Hosting Capacity	Loss Factor Robustness
QNI (Preparatory Activities Required): A second 500 kV interconnector from Western Downs in Queensland via Boggabri and Uralla, to Bayswater in New South Wales. This is an alternative option to QNI medium and large captured in North West NSW scorecard (see Appendix 3).	+2,000 MW ^A	-

A. The 2,000 MW is shared between North West NSW and the New England REZ.

Possible REZ Augmentations

Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness
Augmentation Option 1 Stage 1: For generation interest at Uralla: • Establish a new 500/330 kV substation at Uralla • Turn both Armidale–Tamworth 330 kV lines into Uralla	+4,000- 5,000 MW ^c	\$940 million to \$1,750 million	Step and Fast Change (from 2030-31), Central and High DER (from 2035-36) ^D	A

²⁰ Arena, available at: https://arena.gov.au/news/pumped-hydro-plant-could-unlock-new-england-renewable-energy-zone/

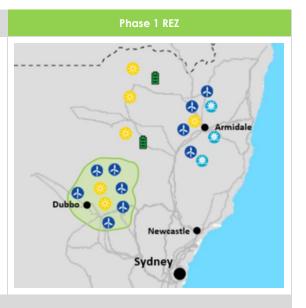
•	Uprate Armidale–Uralla–Tamworth 330 kV lines				
•	A new double-circuit 500 kV line from Uralla to Bayswater				
•	500/330 kV 1,500 MVA transformation at Uralla				
Sta	ge 2:				
For	generation interest in and around the Walcha area:				
	Establish a new 500/330 kV substation near Walcha				
	Turn both Bayswater–Uralla lines into Walcha				
	500/330 kV 1,500 MVA transformation at Walcha				
	A new Bayswater 500/330 kV 1,500 MVA transformer				
	A new Uralla–Boggabri 500 kV single-circuit line ^B				
Αu	gmentation Option 2 (If augmented before QNI):				
Nev	s augmentation is to connect generation within North West w South Wales and New England, and opens for further ensions on QNI along either the west or eastern path:				
	Establish a new 500/330 kV substation at Uralla			Larger build required in the ISP	
	Establish a new 330 kV substation just west of Gunnedah		\$1,340		
	Turn both Armidale–Tamworth 330 kV lines into Uralla				
	A new single-circuit 500 kV line from Uralla to Bayswater	+4,000 MW	million to \$2,500		-
	500/330 kV transformation at Uralla and new substation near Gunnedah	IVI VV	\$2,500 million		
	Build a new 500 kV Uralla–west of Gunnedah–Wollar single-circuit line				
•	Build a new 330 kV Uralla–Tamworth–Liddell single- circuit line				
	Build a new 330 kV west of Gunnedah–Tamworth double-circuit line				
٩u	gmentation Option 3:				
	Establish a new Uralla 500/330 kV substation				
•	Uprate and turn Armidale–Tamworth 330 kV lines 85 and 86 into Uralla	+1,000 MW	\$460 million to \$860 million	Larger build required in ISP scenarios	-
	Build a new 500 kV Bayswater–Uralla single-circuit line		mmon	scenarios	
	500/330 kV transformation at Uralla				

C. Capacity gained depend of resources, location of storage and QNI transfers within this REZ. It assumes QNI Medium and Large in place. Options to increase this to 8,000 MW to match the target from NSW Government will be explored in the preparatory activities for QNI Medium and Large, North West NSW REZ and New England REZ. See Appendix 5. for further details.

D. Additional network augmentation may be required with large VRE build in North West New South Wales, Central West NSW and New England, and coal retirement in NSW to strengthen the network between Bayswater, New Castle and Sydney.

Available Fault Level (MVA)

	Scenario	Existing	2029-30	2034-35
Pumped hydro from the late 2030s is expected to form part of the system strength solution for this (and surrounding) REZs.	Central	550	550	550
	Step	550	1,200	-10,950


System Strength Remediation Augmentation					
	Description	Date Required	Cost		
Central	Remediation not required with forecast level of VRE.	-	-		
Step	Establish 4 x 250 MVAr synchronous condensers.	2031-32	\$180 million to \$230 million		

N3 – Central-West Orana

Summary

The Central–West Orana REZ is electrically close to the Sydney load centre and has moderate wind and solar resources. Currently there is more than 700 MW of commissioned and committed generation within Central–West Orana REZ, most of this generation is derived from solar energy.

With significant existing investment and investor interest, the Central-West Orana REZ has been identified by the New South Wales Government as the state's first pilot REZ – expected to unlock 3,000 MW of transmission hosting capacity by the mid–2020s²¹. Construction of the pilot REZ is expected in begin in 2022. In May, the NSW Department of Planning, Industry and Environment called for renewable energy, energy storage and emerging energy project proponents to register their interest in being part of the first pilot REZ. The registration of interest closed the first week of June.

REZ Assessment

Phase 1 REZ

Central–West Orana REZ has development in phase 1. Generation development within the Central– West Orana REZ is facilitated by the actionable Central–West Orana REZ Transmission Link project.

Renewable Resources							
Resource	Solar			Wind			
Resource Quality	С			С			
Renewable Potential (MW)	7,200			3,000			
Demand Correlation	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demana Correlation	E	F	F	E	D	D	

Climate Hazard

Temperature Score	C	Bush Fire Score	E

	Solar PV (MW)				Wind (MW)				
	Existing/ committed		Projected		Existing/	Projected			
		2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40	
Central		150	2,150	2,200	-	0	800	800	
Step		1,550	2,200	4,800		750	800	2,200	
Fast	520	950	2,200	2,200	251	0	800	800	
High DER		150	150	2,100		0	0	900	
Slow		150	150	150		0	0	0	

²¹ New South Wales Government, Renewable Energy Zones, at <u>https://energy.nsw.gov.au/renewables/renewable-energy-zones</u>

Storage	•

	Suggested Storage for REZ (MW)					
		Depth	Projected			
Central-West Orana bas high quality solar and			2029-30	2034-35	2039-40	
Central-West Orana has high quality solar and moderate quality wind resources. The Central-West Orana REZ has good pumped hydro resources which could be used to firm solar and wind generation. Potential storage sites are situated predominately to the east of the Wellington–Mount	Central		0	0	0	
	Step		0	200	350	
	Fast	Medium	0	0	500	
Piper 330 kV line. Developing pumped hydro or battery storage in this zone would increase the hosting capacity of solar generation within the	High DER		0	0	0	
network by smoothing and firming the profile of	Slow		0	0	0	
energy production across the REZ. Due to the large VRE projection within Central-West	Central		0	0	0	
Orana REZ, storage has been suggested an efficient solution to firm energy production in the Step and	Step		0	0	100	
Fast Change scenarios.	Fast	Deep	0	0	0	
_	High DER		0	0	0	
	Slow		0	0	0	

Description	Approximate Existing Hosting Capacity	Loss Factor Robustness
The Central–West Orana REZ is connected via a 330 kV circuit between Wellington–Wollar and Mount Piper–Wellington. A 132 kV network connects Wellington, Mount Piper and Yass. A 132 kV network further extends from Wellington to Dubbo area.	3,000 MW	A
Associated Interconnector Augmentations		

There are no associated interconnector augmentations with this REZ.

Possible REZ Augmentations

Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness
 A 500 kV (or 330kV) loop which traverses the Central-West region 	+3,000 MW	\$450 million to \$850 million	Central, Step, Fast, Slow and High DER	A
 Augmentation Option 2: Develop a Central West hub: A new Central West Hub 330 kV substation A new double-circuit Wollar–Central Hub 330 kV line A new Central West Hub–Wellington 330 kV line 500/330 kV Wollar transformer 	+1,000 MW	\$390 million to \$720 million	Larger build required in the ISP	-

Available Fault Level (MVA)							
		Scenario	Existing	2029-30	2034-35		
Available fault level in this REZ is influenced by planting of wind and solar PV from the late 2020s.		Central	1,200	1,300	-700		
		Step	1,200	-5,650	-5,600		
System St	ength Remediation Augmentation						
Description			Date Required	c	ost		
Central Establish 1 x 250 MVAr synchronous condenser.		2032-33	\$45 million to \$60 million				
Step Establish 2 x 250 MVAr synchronous condensers.			2027-28	\$95 million to	o \$120 million		

N4 – Southern New South Wales Tablelands

Summary

The Southern New South Wales Tablelands REZ has excellent wind resources. There is currently just over 640 MW of renewable generation installed within this zone – over 630 MW of which is wind generation. Southern New South Wales Tablelands has one of the highest wind capacity factors within New South Wales. However, there has been significant opposition from the community within this area for the connection of any additional wind generation, and the proposed extension of Crookwell 3 Wind Farm was rejected by the New South Wales Independent Planning Commission²².

REZ Assessment

N/A

Southern NSW Tablelands REZ does not have REZ phase development.

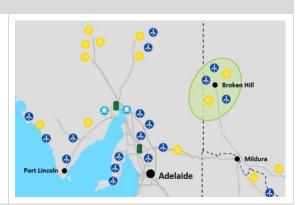
Renewable Resources

Resource	Solar			Wind			
Resource Quality	D			В			
Renewable Potential (MW)	_			_			
	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demand Correlation	E	E	F	С	С	С	

Climate Hazard

Temperature Score	C	Bush Fire Score	E

	Solar PV (MW)			Wind (MW)				
	Existing/	Projected		Existing/	Projected			
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40
Central						250	250	250
Step						250	250	250
Fast	10	scenarios,	delling outcom did not projec	t additional	635	250	250	250
High DER		solar g	solar generation for this REZ.			250	250	250
Slow						250	250	250


Storage					
Southern NSW Tablelands has identified pumped hydro locations	Suggested Storage for REZ (MW)				
330 kV network between Marulan and Dapto. With more than 2, storage developed in the Tumut REZ and little projections of VRE NSW Tablelands area, no storage has been suggested in the regi	Southern NSW Tablelands has not been suggested for storage across any scenario in the 2020 ISP.				
Existing Network Capability					
Description		ate Existing Capacity	Loss Factor Robustness		
This REZ is close to four 330 kV transmission lines and two 500 kV lines supporting Sydney. The existing network could support appr 1,000 MW of new connections.	1,00	A			
Associated Interconnector Augmentations					
Description		Additional Ho	Loss Factor Robustness		
There are no associated interconnector augmentations with this F	REZ.				
Available Fault Level (MVA)					
	Scenario	Existing	2029-30	2034-35	
Available fault level in this REZ is influenced by planting of wind from the mid-2020s.	Central	2,700	1,300	1,350	
	Step	2,700	2,650	2,250	
System Strength Remediation Augmentation					
Remediation not required with forecast level of VRE in the Centra	I and Step Change	e scenarios.			

N5 – Broken Hill

Summary

Broken Hill REZ has excellent solar resources. It is connected to the New South Wales grid via a 220 kV line from Buronga with an approximate length of 270 km. The current capacity of this 220 kV line is utilised by the existing solar, wind and gas generation in the area.

With little local load and the long distance to the load centres, the MLF robustness for this REZ is one of the worst in the NEM. Significant development of VRE in this REZ could prove costly as it would require significant transmission network augmentation due to the distance of the REZ from the main transmission paths of the shared network. For this reason, the ISP has prioritised other REZ for development ahead of this REZ.

REZ Assessment

N/A

Broken Hill REZ does not have any projected development.

Renewable Resources

Resource	Solar			Wind			
Resource Quality	A			С			
Renewable Potential (MW)	8,000			5,100			
Domand Correlation	2020	2030	2040	2020	2030	2040	
Demand Correlation	E	F	F	E	E	E	

Climate Hazard

Temperature ScoreEBush Fire ScoreC

	Solar PV (MW)				Wind (MW)				
	Existing/	Projected		Existing/	/	Projected			
	committed	2029-30	2034-35	2039-40	committed	ed 2029-30	2034-35	2039-40	
Central									
Step		The mo	delling outcom	os for all		The mod	T I I.I. (
Fast	54	scenarios,	did not projec	t additional	199		The modelling outcomes, for all scenarios, did not project additional wind generation for this REZ.		
High DER		solar g	eneration for t	IIIS REZ.					
Slow									
Storage									
				ped Suggested Storage for REZ (MW)					
due to the la	Broken Hill REZ has not been identified as having significant potential pumped hydro capability. Furthermore, no VRE is projected for this REZ, in any scenario, due to the large costs required to extend additional transmission infrastructure to this zone. For these reasons, no storage has been suggested for this zone.							ted for storage 2020 ISP.	

Existing Network Capability								
Description		Approximate Existing Hosting Capacity						
Broken Hill REZ is connected via a 270 km 220 kV line from Buror Hill. With 253 MW of generation already connected within this zo additional spare hosting capacity available.		-	F					
Associated Interconnector Augmentations								
Description	Additional H	osting Capacity	Loss Factor Robustness					
There are no associated interconnector augmentations with this REZ.								
Possible REZ Augmentations								
Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness				
Due to the location of this REZ and distance of network augment economically. Possible future consideration should include option								
Available Fault Level (MVA)								
	Scenario	Existing	2029-30	2034-35				
Available fault level in this REZ is influenced by development of nearby REZs.	Central	At limit ^a	-300	-300				
	Step	At limit ^A	-250	-300				
A. Existing system strength limits in this area are already requiring reme	diation by connecti	ng generation.						
System Strength Remediation Augmentation								
Remediation requirements shown for this REZ are due to expansi reported in REZ N6.	on of VRE in neig	hbouring REZs, a	nd are met through	a joint solutior				

N6 – South West New South Wales

Phase 2 REZ Summary In the 2018 ISP, the South West New South Wales REZ formed part of Sydney the Murry River REZ which covered the western part of New South Wales and Victoria. The New South Wales portion of the Murray River REZ now forms the South West New South Wales REZ. 00 This zone has over 1,000 MW of generation currently in service and committed, all of which is solar generation. For any further large scale renewable generation to connect in this area, additional transmission infrastructure would be required to get the generation from this REZ to the Sydney load centre. The capacity within this REZ and ability to transfer energy from the REZ to the main load centres in the greater Melbourne Sydney area will be improved by the proposed New South Wales and 6 South Australia interconnector, Project EnergyConnect, together with 88 HumeLink. One option for VNI West (Kerang route) would further increase the hosting capacity of this REZ.

REZ Assessment

Phase 2 REZ	

South West NSW REZ has development in phase 2. The full commissioning of the Project EnergyConnect expected by 2024-25, will increase the hosting capacity within this REZ. The additional capacity released through Project EnergyConnect is fully utilised in all scenarios except for the Slow Change scenario. In the Fast Change and Step Change scenario the capacity is utilised in the mid–late 2020s. In the Central and High DER scenarios, it is utilised in the mid–late 2030s.

Renewable Resources

Resource	Solar			Wind			
Resource Quality	В			D			
Renewable Potential (MW)	4,000			4,300			
Down and Convolution	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demand Correlation	E	F	F	D	D	D	

Climate Hazard

Temperature Score	E	Bush Fire Score	D

		Solar PV	′ (MW)		Wind (MW)							
	Existing/		Projected		Existing/ committed	Existing/	Existing/	Existing/				
	committed	2029-30	2034-35	2039-40		2029-30	2034-35	2039-40				
Central		0	600	600								
Step		600	600	600								
Fast	1,034	600	600	600	REZ. The mo	There is no existing or committed wind generation in thi REZ. The modelling outcomes, for all scenarios, did not						
High DER		0	0	600	project additional wind generation for this REZ.							
Slow		0	0	0	_							

Storage					
		Sugg	jested Storage f	or REZ (MW)	
South West New South Wales REZ has not been identified as having significant					
potential pumped hydro capability. For this reason, no pumped hydro has been		Depth	2029-30	2034-35	2039-40
suggested for this region. With over 1,000 MW of solar generation in	Central		0	150	150
service and committed within this zone, and another 600 MW projected, this REZ	Step		0	0	0
would be a good location for storage. Medium storage is suggested for South	Fast	Medium	0	200	200
West New South Wales in the Central and	High DER		0	0	0
ast Change scenarios.	Slow		0	0	0
Existing Network Capability					
Description				Existing Hosting Dacity	Loss Factor Robustness
The 220 kV network within this REZ is weak and currently has no spare hosting capacity to connect large scale renewable energy.				E	
Associated Interconnector Augmentation	ons				
Description			Additional Ho	Loss Factor Robustness	
Project EnergyConnect (Actionable ISP pr A new 330 kV interconnector between Rober Wagga Wagga in New South Wales, via Burc	rtstown in Sout	h Australia and	+60	A	
VNI West (Actionable ISP Project):					
A new 500 kV interconnector between Victor multiple alternative corridors for VNI West o Kerang, opens capacity within this REZ: see .	f which one op		+1,0	-	
Possible REZ Augmentations					
Description			Additional Hosting Capacity	Upgrade Cost Estimate	ISP Developmer
Augmentation Option 14:					
 Build a new double/single-circuit Darlin line 	agga 330 kV			Not identified	
• Establish 330 kV substation at Hay ^B			+1,400 MW	\$450 million to \$840 million	as being required unde
 Build a double-circuit 330 kV line from substation^B 	nt to Hay		φυτο minion	any ISP scenar	
Install 1,500 MVA, 500/330 kV transform	nation at Wagg	ja			
A. Assumes HumeLink is built.B. Only if significant interest lies around Hay.					

Available Fault Level (MVA)									
		Scenario	Existing	2029-30	2034-35				
Available fault level in this REZ is influenced by planting of solar PV from the mid-2030s.		Central	At limit ^c	-1,150	-950				
		Step	At limit ^c	-1,000	-1,000				
C. Existing system strength limits in this area are already requiring remediation by connecting generation.									
System Str	rength Remediation Augmentation								
	Description	Date Required		Cost					
Central	Establish 1 x 250 MVAr synchronous conde	2033-34	\$45 millio	n to \$60 million					
Step	Establish 1 x 250 MVAr synchronous conde	2028-27	\$45 millio	n to \$60 million					

N7 – Wagga Wagga

Summary Phase 2 REZ

REZ Assessment

Phase 2 REZ

Wagga Wagga REZ has development in phase 2. The commissioning of HumeLink will increase the hosting capacity within this REZ by approximately 1,000 MW in 2025-26. The additional hosting capacity provided by HumeLink is fully utilised in all scenarios except the Slow Scenario; the Step and Fast Change scenarios make full use of the additional capacity from the late 2020s and the Central scenario from 2032-33. The High DER scenario develop Wagga Wagga REZ in 2032-33, but only maximises the capacity available into the 2040s.

Renewable Resources

Resource	Solar			Wind			
Resource Quality	C			Е			
Renewable Potential (MW)	1,100			1,100			
Downed Cowelstien	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demand Correlation	E	F	F	D	D	D	

Climate Hazard

Temperature Score	D	Bush Fire Score	D

		Solar PV	′ (MW)		Wind (MW)						
	Existing/		Projected		Existing/ committed	Projected					
	committed	2029-30	2034-35	2039-40		2029-30	2034-35	2039-40			
Central		0	1,000	1,000							
Step		1,000	1,000	1,000	These is a second						
Fast	100	1,000	1,000	1,000	REZ. The mo	existing or committed wind generation in th modelling outcomes, for all scenarios, did not					
High DER		0	400	1,000	project additional wind generation for this REZ.						
Slow		0	0	0							

Storage					
Wagga Wagga REZ has not been identified as having significa	Suggested Storage for REZ (MW)				
pumped hydro capability. Across all scenarios, moderate to hig solar generation is projected to grow in this REZ. However, no suggested for this REZ due to it being located electrically close in the snowy region.		a REZ has not be oss any scenario	een suggested for in the 2020 ISP.		
Existing Network Capability					
Description			ate Existing Capacity	Loss Factor Robustness	
The 330 kV and the 132 kV network around Wagga Wagga ha spare hosting capacity available.		-	С		
Associated Interconnector Augmentations					
Description	Addition Cap	Loss Factor Robustness			
HumeLink (Actionable ISP project): A new 500 kV transmission line connection between Wagga, N Snowy area and Bannaby.	+1,00	A			
Possible REZ Augmentations					
Description		Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	
Augmentation Option 1:				Not identified	
 Build a new 500 kV substation at Wagga Build a new 500 kV Bannaby–Wagga single-circuit line Install 1,500 MVA of 500/330 kV transformation at Wagga 	a	+1,000 MW	\$480 million to \$890 million	Not identified as being required under any ISP scenario	
Available Fault Level (MVA)					
	Scenario	Existing	2029-30	2034-35	
Available fault level in this REZ is influenced by planting of solar PV from the mid-2030s.	Central	At limit ^A	1,350	300	
	Step	At limit ^A	1,400	800	
A. Existing system strength limits in this area are already requiring re	emediation by conne	ecting generation.			
System Strength Remediation Augmentation					
Remediation not required with forecast level of VRE in the Cer	itral and Step Cha	nge scenarios.			

N8 – Tumut

Summary

The Tumut REZ has been identified due to the potential for additional pumped hydro generation. The proposed HumeLink, an actionable ISP project currently undergoing a RIT–T, will enable the connection of just over 2,000 MW of pumped hydro generation (Snowy 2.0) in this area.

On the 31st of January 2020, the New South Wales and Commonwealth governments signed a memorandum of understanding (MOU) that sets out a clear, long–term path to help the state meet its targets of net zero emissions by 2050²³. Key initiatives of this MOU include improving transmission interconnections and network access including accelerating and delivering the HumeLink project to unlock existing and future generation from the Snowy area within the Tumut REZ.

REZ Assessment

Phase 2

Tumut REZ does not have any VRE projected. The actionable ISP project HumeLink is expected to unlock existing and future generation from Snowy Hydro.

Renewable Resources

Resource		Solar		Wind			
Resource Quality		С		В			
Renewable Potential (MW)	-			_			
Demand Correlation	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demand Correlation	E	E	F	С	С	С	

Climate Hazard

Temperature Score	Bush Fire Score	Е
-------------------	-----------------	---

	Solar PV (MW)				Wind (MW)				
	Existing/ committed 2	Projected		Existing/	Projected				
		2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40	
Central									
Step				i cui					
Fast		lelling outcome	es, for all scena	rios, did not	There is no existing or committed wind generation in this REZ. The modelling outcomes, for all scenarios, did not project additional wind generation for this REZ.				
High DER	project ad	Iditional solar <u>(</u>	generation for t	his Re∠.					
Slow									

²³ New South Wales Government Memorandum of Understanding, at <u>https://energy.nsw.gov.au/government-and-regulation/electricity-strategy/memorandum-understanding</u>

Storage							
Tumut REZ has excellent pumped hydro		Sugg	ested Storage	for REZ (MW)			
resources. Snowy 2.0 ²⁴ , has been considered committed, across all scenarios, with the timing		Dauth		Projected			
in 2025.		Depth	2029-30	2034-35	2039-40		
The HumeLink RIT–T, which is currently underway, will unlock existing and future generation within this area. This project	Central		2,040	2,040	2,040		
proposes the addition of 500 kV transmission between Wagga Wagga, the Tumut area and	Step	C	2,040	2,040	2,040		
Bannaby. In late February 2019, the Commonwealth Government approved Snowy	Fast	Committed Snowy 2.0 (Deep)	2,040	2,040	2,040		
2.0 as part of its plan to support renewable energy transformation delivering affordable,	High DER	(Beep)	2,040	2,040	2,040		
reliable power ²⁵ .	Slow		2,040	2,040	2,040		
Existing Network Capability							
Description		Approximate Existing Hosting Capacity	Loss Factor Robustness				
Currently the 330 kV transmission network around during peak demand periods. A careful balance of and flow between Victoria and New South Wales area.	ydro units	-	N/A				
Associated Interconnector Augmentations							
Description				Additional Hosting Capacity	Loss Factor Robustness		
HumeLink (Actionable ISP project): A new 500 kV transmission line connection betwee Bannaby.	een Wagga, Mar	agle in the Snow	y area and	+2,040 MW ²⁶	N/A		
Available Fault Level (MVA)							
		Scenario	Existing	2029-30	2034-35		
Available fault level in this REZ is influenced by denearby REZs.	evelopment of	Central	At limit	1,700	300		
		Step	At limit	1,750	800		
System Strength Remediation Augmentation	ı						
Remediation not required with forecast level of V	RE in the Centra	al and Step Chang	ge scenarios.				

²⁴ About Snowy Hydro, available at <u>https://www.snowyhydro.com.au/snowy-20/about/</u>

²⁵ Prime Minister of Australia, media release 26 February 2019, available at <u>https://www.pm.gov.au/media/historic-snowy-20-plan-approved</u>

 $^{^{\}rm 26}$ Unlocking new generation capacity of 2,040 MW for Snowy 2.0

N9 – Cooma-Monaro

Summary

The Cooma-Monaro REZ has been identified for its pumped hydro potential. This REZ has moderate to good quality wind resources with one wind farm, Boco Rock Wind Farm (113 MW), connecting within this REZ since the 2018 ISP.

REZ Assessment

N/A

Cooma-Monaro REZ does not have any REZ phase development.

Renewable Resources

Resource	Solar			Wind			
Resource Quality		D	С				
Renewable Potential (MW)	-			300			
	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demand Correlation	E	E	F	С	С	С	

Climate Hazard

|--|

	Solar PV (MW)			Wind (MW)				
	Existing/		Projected		Existing/ committed	Projected		
	committed	2029-30	2034-35	2039-40		2029-30	2034-35	2039-40
Central						0	300	300
Step	Th and is a second					100	300	300
Fast	There is no existing or committed solar generation in this REZ. The modelling outcomes, for all scenarios, did not project additional solar generation for this REZ.			113	0	300	300	
High DER					0	0	300	
Slow						0	0	0

Storage						
			Sugges	led Storage for RE	z (MW)	
network co	onaro REZ was identified due to its pumped onnection at Cooma-Monaro is weak, to acc pumped hydro this network would need to	commodate any	Cooma-Monaro has not been suggested for storage across any scenario in the 2020 ISP.			
Existing N	letwork Capability					
Descriptio	on		Approximate Ex Capo		Loss Factor Robustness	
	g 132 kV network connecting Cooma-Mona ale and Munyang can accommodate approx n.	200 M	МW	F		
Associate	ed Interconnector Augmentations					
Descriptio	on	Additional Hos	ling Capacity	Loss Factor Robustness		
There are	no associated interconnector augmentation	s with this REZ.				
Possible I	REZ Augmentations					
Description		Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness	
 Augmentation Option 1: Build new 132 kV REZ substation Build a new single-circuit 132 kV Canberra/Williamsdale to a new substation located near generation interest 		+200 MW	\$90 million to \$160 million	Step Change (2031-32) Central and Fast Change (2033-34) High DER (2037-38)	F	
Available	e Fault Level (MVA)					
Available fault level in this REZ is influenced by planting of wind from the mid-2030s.		Scenario	Existing	2029-30	2034-35	
		Central	At limit	200	-700	
		Step	At limit	-100	-700	
System St	rength Remediation Augmentation					
	Description		Date Required	Cost		
Central	Establish 1 x 125 MVAr synchronous cond	enser.	2031-32	\$40 million to \$55 million		
Step	Establish 1 x 125 MVAr synchronous cond	enser.	2031-32	\$40 million to \$55 million		

A5.4.3 Queensland REZ scorecards

Q1 – Far North Queensland

Summary Phase 3 REZ Far North Queensland REZ is at the most northerly section of Powerlink's network. It has excellent wind and moderate solar resources. This REZ contains two hydro power stations, Barron Gorge and Kareeya, with a combined capacity of 152 MW. Two renewable generation projects have been commissioned since the 2018 ISP: Lakeland Solar and Storage (12 MW) and Mt Emerald Wind Farm (180 MW). Far North Queensland has a moderate 275 kV network connection capacity, however, its distance makes it prone to losses with the addition of generation. 0 AEMO recommends the installation of dedicated wind monitoring equipment or partnering with interested parties to measure the wind potential and quantify its potential in greater detail to inform future assessment.

REZ Assessment

Phase 3 Far North Queensland has development in phase 3. In the mid to late 2030s the future IS transmission augmentation project will be required to support the VRE projected for this	
--	--

Renewable Resources

Resource	Solar		Wind			
Resource Quality	С		А			
Renewable Potential (MW)	1,100		2,400			
Demand Correlation	2020	2030	2040	2020	2030	2040
Demana Correlation	F	F	F	E	D	D

Climate Hazard

Temperature Score	В	Bush Fire Score	A

	Solar PV (MW)			Wind (MW)					
	Existing/		Projected		Existing/ committed	Projected			
	committed	2029-30	2034-35	2039-40		2029-30	2034-35	2039-40	
Central		50	50	50		650	650	1,600	
Step		50	50	50	-	650	1,100	2,400	
Fast	10	50	50	50	193	600	650	1,900	
High DER		50	50	50		650	650	1,950	
Slow		50	50	50		0	0	650	

Storage						
Far North Queensland has good potential pumped hydro locations		Sugges	ted Storage for R	EZ (MW)		
Cairns, towards the north east around Desailly and around Tully. The transmission network near this location is weak and upgrades would to accommodate large scale pumped hydro generation. There are pumped hydro locations near Herberton within proximity of the Ch Walkamin/Woree 275 kV lines.	Far North Queensland has not been suggested for storage across any scenario in the 2020 ISP.					
Far North Queensland has good wind resource capacity that has a correlation compared to other REZs.						
Existing Network Capability						
Description			nate Existing Capacity	Loss Factor Robustness		
Far North Queensland REZ connection is to the 275 kV network co Woree to Ross via Chalumbin and Walkamin.	nnecting	700) MW	E		
Associated Interconnector Augmentations						
Description	Additional Ho	osting Capacity	Loss Factor Robustness			
There are no associated interconnector augmentations with this RE	There are no associated interconnector augmentations with this REZ.					
Possible REZ Augmentations						
Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness		
Augmentation Option 1:						
To connect generation in the northern part of Far North Queensland REZ:			Not identified as required in any ISP scenario			
• Establish a new 275 kV substation in the Lakeland area		\$280 million to \$520 million ^a				
• Build a 275 kV line from Walkamin to the new substation	+500 MW			-		
Build a new 275 kV Chalumbin–Walkamin single-circuit line						
To increase capacity on the 275 kV transmission backbone towards Townsville:						
• Rebuild the double-circuit Chalumbin–Ross 275 kV line at a higher capacity (possibly timed with asset replacement)						
Augmentation Option 2:						
To connect generation in the Ravenshoe, Evelyn and Tumoulin area:			Not identified as required in any ISP scenario			
• Establish a new 275 kV substation north of Millstream						
Build a 275 kV single-circuit line from Chalumbin to Millstream	+500 MW	\$90 million to \$160		-		
• Turn Chalumbin–Woree 275 kV line into Millstream		million ^A				
To increase capacity on the 275 kV transmission backbone towards Townsville:						
• Rebuild the double-circuit Chalumbin–Ross 275 kV line at a higher capacity (possibly timed with asset replacement)						

Augmentation Option 3 ^B :				
 To connect generation in the Ravenshoe, Evelyn and Tumo Establish a new 275 kV substation north of Millstream Build a 275 kV single/double-circuit line from Chalum Millstream Turn Chalumbin–Woree 275 kV line into Millstream To increase capacity on the 275 kV transmission backbone Townsville: Rebuild the double-circuit Chalumbin–Ross 275 kV line higher capacity (possibly timed with asset replacemer Build an additional Chalumbin–Ross 275 kV single-circuit 	bin to +1,200 – 1,300 MW towards e at a t)	\$360 million to \$660 million ^a	Central (2037-38), High DER (2037-38), Fast (2035-36)	E
Augmentation Option 4 ^B :				
 To connect generation in the Ravenshoe, Evelyn and Tumo Establish a new 275 kV substation north of Millstream Build a 275 kV double-circuit line from Chalumbin to Turn Chalumbin–Woree 275 kV line into Millstream To connect generation in the northern part of Far North QuREZ: Establish a new 275 kV substation near Lakeland Build a 275 kV line from Walkamin to the new substat Build a new Chalumbin–Walkamin 275 kV line To increase capacity on the 275 kV transmission backbone Townsville: Rebuild the double-circuit Chalumbin–Ross 275 kV line Build an additional double-circuit Chalumbin–Ross 275 	Millstream ueensland ion towards e at a t)	\$710 million to \$1,310 million ^A	Step (2030-31) ^C	-
 A. The rebuild of the Chalumbin–Ross 275 kV line is required for assess included. B. Please refer to North Queensland REZ for additional augmentation C. A staged approach to have the full build by 2038. 			-	ation was not
Available Fault Level (MVA)				
	Scenario	Existing	2029-30	2034-35
Available fault level in this REZ is influenced by planting of from the late 2020s.	wind Central	At limits ^D	-800	-750
	Step	At limits ^D	-400	-900
D. Powerlink is currently finalising mitigation to meet the declared sy	stem strength shortfall at Ross an	d this may offset som	ne of the later shortf:	alls shown

System Strength Remediation Augmentation

	Description	Date Required	Cost
Central	Establish 1 x 250 MVAr synchronous condenser.	2027-28	\$45 million to \$60 million
Step	Establish 1 x 250 MVAr synchronous condenser.	2025-26	\$45 million to \$60 million

Q2 – North Queensland Clean Energy Hub

Summary

North Queensland Clean Energy Hub is in north Queensland. It has excellent solar and wind resources. The existing 132 kV line to the North Queensland Clean Energy Hub from Ross cannot accommodate largescale generation developments.

Significant transmission infrastructure would be required to connect large-scale generation in this area which would include building a 200 km double/single-circuit line.

One renewable generation project has been commissioned since the 2018 ISP – Kidston Solar Project Phase 1 (50 MW), and two additional projects have been committed: Hughenden Sun Farm (18 MW) and Kennedy Energy Park Phase 1 (60 MW). In addition, there is interest of more than 1,200 MW consisting of wind, solar and pumped hydro within this REZ.

REZ Assessment

North Queensland Clean Energy Hub REZ does not have any projected development.

Renewable Resources

Resource	Solar		Wind			
Resource Quality	А			А		
Renewable Potential (MW)	8,000			18,600		
Dama and Camalalitan	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40
Demand Correlation	F	F	F	E	D	D

Climate Hazard

Temperature Score	D	Bush Fire Score	С

	Solar PV (MW)				Wind (MW)				
	Existing/ committed	Projected			Existing/	Projected			
		2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40	
Central	83								
Step		The modellin	a outcomos fr	ar all sconarios		The modelling outcomes, for all			
Fast		The modelling outcomes, for all scenarios, did not project additional solar generation for this REZ.			43	scenarios, did not project additional			
High DER						wind generation for this REZ.			
Slow									

Storage							
North Queensland Clean Energy Hub REZ has not been identified as having significant potential pumped hydro capability. There is		Sugg	Suggested Storage for REZ (MW)				
having significant po- interest to develop a converting the Kidst pumped hydro sche would be required to has not been identifi does not project win	North Queensland Clean Energy Hub has not been suggested for storage across any scenario in the 2020 ISP						
Existing Network C	apability						
Description		Approximate Hosting Cap		Loss Factor Robustness			
This REZ's connection is via a single 132 kV line from Ross-Kidston-George Town.		_		F			
Associated Interco	onnector Augmentations						
Description		Additional Hosting Capacity		Loss Factor Robustness			
There are no associa	ted interconnector augmentations with this REZ.						
Possible REZ Augm	entations						
Description		Additional Hosting Capacity	Hosting Upgrad				
Augmentation Op	tion 1:						
For generation intere	est near Kidston:						
 Establish a new 275 kV line 	275 kV substation mid-point Chalumbin-Ross						
• Turn in both Cl substation	alumbin–Ross 275 kV lines into the new	+800 MW	\$310 millio		Not identified a required in any		
	275 kV substation near Kidston or area with energy interest		millio	on ^a	scenario		
	uble-circuit 275 kV line from the substation near substation mid-point Ross and Chalumbin						
	een the new mid-point substation and Ross red if Q1 REZ is also developed						
Augmentation Op	lion 2:						
For generation interest near Kidston and Hughenden							
• Establish a new 275 kV line	Establish a new 275 kV substation mid–point Chalumbin–Ross 275 kV line Turn in both Chalumbin–Ross 275 kV lines into the new substation		\$880 million to \$1,630 million ^A		Not identified a required in any scenario		
• Build a new 275 kV substation near Kidston							
• Build a new 27	kV substation near Hughenden						
	gle-circuit from mid–point Ross and Chalumbin lughenden and back to Ross/Strathmore						

²⁷ Genex Power Limited Kidston pumped storage hydro project available at: <u>https://www.genexpower.com.au/250 Mw-kidston-pumped-storage-hydro-project.html</u>

•	Upgrades between the new mid-point substation and Ross would be required if Q1 REZ is also developed			
Au	gmentation Option 3:			
•	Build a new 275 kV substation near Kidston			
•	Build a new 275 kV substation near Hughenden			
•	Establish a new 275 kV substation mid–point between Kidston and Hughenden		¢ c 7 0	Not identified as
•	Build a new double-circuit from mid–point Kidston and Hughenden to Ross	+1,000 MW	\$670 million to \$1,250 million ^a	required in any scenario
•	Build a new single-circuit from mid-point substation to Kidston			
•	Build a new single-circuit from mid–point substation to Hughenden			
•	Reactive power support equipment			

A. The rebuild of the Chalumbin–Ross 275 kV line is required for asset replacement around mid to late 2030s, therefore the cost of the augmentation was not included.

Available Fault Level (MVA)

	Scenario	Existing	2029-30	2034-35
Available fault level in this REZ is influenced by VRE development and remediation of nearby	Central	A + 1::+-B	-800	-750
REZs.	Step	At limits ^B	-400	-550

B. Powerlink is currently finalising mitigation to meet the declared system strength shortfall at Ross, and this may offset some of the later shortfalls shown

System Strength Remediation Augmentation

The system strength remediation augmentation proposed for nearby REZ Q1 would also resolve the remediation requirements, assuming no further VRE development in this REZ.

Q3 – Northern Queensland

Summary

The North Queensland REZ encompasses Townsville and the surrounding area. It has good quality solar and wind resources and is situated close to the 275 kV corridor. Clare Solar Farm (100 MW), Haughton Solar Farm (100 MW), Ross River Solar Farm (116 MW), and Sun Metals Solar Farm (107 MW) are operational.

The existing 275 kV network has good capacity, but this is shared with the REZs in North and Central Queensland. Even though there is good network capacity, the MLF will decline sharply due to the distance from major load centres. Further connections of inverter-based resources in this area is likely to require system strength remediation.

REZ Assessment

N/A

Northern Queensland REZ does not have any projected development.

Renewable Resources

Resource	Solar			Wind		
Resource Quality	А			В		
Renewable Potential (MW)	3,400		_			
	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40
Demand Correlation	F	F	F	D	С	С

Climate Hazard

|--|

		Solar P	Solar PV (MW)			Wind (MW)			
	Existing/ committed		Projected		Existing/		Projected	cted	
		2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40	
Central									
Step	423	The modelling outcomes, for all scenarios, did not project additional solar generation			There is no existing or committed wind generation in this REZ. The modelling outcomes, for all scenarios, did not project additional wind generation for this REZ.				
Fast									
High DER			for this REZ.		generation for	tnis Rez.			
Slow									

Storage						
Northern Queensland has good potential pumped hydro location:	s to the north	Sugge	ested Storage for	REZ (MW)		
east (near the Chalumbin–Ross 275 kV lines) and just east of Towr no projected VRE for this zone and for this reason, no storage has suggested.	Northern Queensland REZ has not been suggested for storage across any scenario in the 2020 ISP.					
Existing Network Capability						
Description			mate Existing g Capacity	Loss Factor Robustness		
The current network connects to Far North QLD via two Ross–Cha lines and to Strathmore via three Ross–Strathmore 275 kV lines. Th hosting capacity of approximately 1,800 MW is for all the generation within REZs Q1, Q2 and Q3.	1,8	300 MW	D			
Associated Interconnector Augmentations						
Description			nal Hosting Loss Factor Ipacity Robustness			
There are no associated interconnector augmentations with this R	EZ.					
Possible REZ Augmentations						
Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness		
Augmentation Option 1: • Upgrade lower rated Ross–Strathmore 275 kV line	+400 - 600 MW	\$10 million to \$15 million ^A	Central, High DER and Fast (2037-38) Step (2035-36) ^B	D		
 Augmentation Option 2: Build an additional 275 kV line between Ross and Nebo via Strathmore 	+700 - 800 MW	\$360 million to \$670 million	Step (2035-36) ^в	-		
A. Cost provided by PowerlinkB. Augmentation required for the increase in VRE in Far North Queensland.						
Available Fault Level (MVA)						
	Scenario	Existing	2029-30	2034-35		
Available fault level in this REZ is influenced by VRE development and remediation of nearby REZs.	Central	A+ li==:+=C	-800	-750		
	Step	At limits ^c	-400	-550		
C. Powerlink is currently finalising mitigation to meet the declared system stre	ength shortfall at Ross	, and this may off	set some of the later sho	ortfalls shown		
System Strength Remediation Augmentation						

assuming no further VRE development in this REZ. arby

Q4 – Isaac

Summary

The Isaac REZ has good wind and solar resources covering Collinsville and Mackay. Daydream Solar Farm (150 MW), Hayman Solar Farm (50 MW), Collinsville PV (41 MW), Clermont Solar Farm (75 MW), Emerald Solar Farm (72 MW), Hamilton Solar Farm (57 MW), Lilyvale Solar Farm (100 MW), Rugby Run (65 MW) and Whitsunday Solar Farm (57.5 MW) are operational. The existing 275 kV network has spare capacity, but this is shared with the REZs in North and Central Queensland.

REZ Assessment

Phase 3	Isaac REZ has development in phase 3. For large scale VRE development in this region, upgrades are required to transmission network between Central to Southern Queensland and between Bouldercombe and Calliope River. The future ISP projects, Central to Southern Queensland
	bouldercombe and Callope River. The future is projects, Central to Southern Queensiand
	transmission project and Gladstone Reinforcement, will facilitate development of this REZ.

Renewable Resources

Resource		Solar			Wind		
Resource Quality		В			В		
Renewable Potential (MW)		6,900		3,800			
	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demand Correlation	F	F	F	С	В	В	
Climate Hazard							

Temperature ScoreCBush Fire ScoreC	
------------------------------------	--

	Solar PV (MW)					Wind (MW) Projected			
	Existing/ committed		Projected		Existing/				
		2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40	
Central		450	450	450		0	0	1,000	
Step		350	350	350	There is no existing or	1,000	1,000	1,000	
Fast	666	350	350	350	committed wind	0	1,000	1,000	
High DER		350	350	350	generation in this REZ.	0	0	1,000	
Slow		350	350	350		0	0	0	

Storage

There are numerous potential pumped hydro locations to the north east and south east of Nebo.

This REZ has a good diversity of resources wind, solar and storage. Locating storage in this zone could maximise transmission utilisation. Pumped hydro, if synchronous, could also further improve system strength within the area when in service.

The Isaac REZ is well located, close to other REZs in North and Central Queensland with high projected VRE. Strategic development of large scale storage could defer some costly transmission network augmentations. Shallow, medium and deep storage has been suggested for this zone.

	Suggested Storage for REZ (MW)							
	Dauth		Projected					
	Depth	2029-30	2034-35	2039-40				
Central		0	0	850				
Step		50	50	50				
Fast	Shallow	0	0	200				
High DER		0	0	0				
Slow		0	0	150				
Central	Medium	0	250	250				
Step		600	1,100	1,100				
Fast		0	200	250				
High DER		0	0	0				
Slow		0	0	0				
Central		0	0	0				
Step	Deep	0	50	450				
Fast		0	0	500				
High DER		0	0	150				
Slow		0	0	0				

Existing Network Capability

Description	Approximate Existing Hosting Capacity	Loss Factor Robustness
275 kV and 132 kV circuits pass through this REZ. The hosting capacity along this corridor is approximately 2,000 to 2,500 MW which includes any generation that connects in Q1, Q2, Q3, Q4 and Q5.	2,000 MW – 2,500 MW	В
Associated Interconnector Augmentations		
Description	Additional Hosting Capacity	Loss Factor Robustness
There are no associated interconnector augmentations with this REZ.		

Possible REZ Augmentations				
Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Facto Robustnes
Augmentation Option 1:				
 Rebuild the Bouldercombe–Calliope River and the Bouldercombe–Raglan–Larcom Creek–Calliope River 275 kV lines as a high capacity double-circuit lines (may be possible to bring forward the end of life condition replacement)^A 	+700 MW - 800 MW	\$300 to \$560 million	Central, Step, Slow, Fast and High DER (early to mid- 2030s)	A
 A new double-circuit Calvale–Larcom Creek 275 kV line 275/132 kV Calliope River transformer 				
Augmentation Option 2: Build an additional 275 kV line between Bouldercombe and Calliope River	+1,000 MW	\$130 million to \$240 million	Central, Step, Slow, Fast and High DER (mid to late-2030s)	-
Augmentation Option 3: Build an additional Bouldercombe – Nebo 275 kV single-circuit line	+700 MW - 800 MW	\$320 million to \$600 million	Step, Fast, High DER (mid to late- 2030s)	-
A. Cost assumes full cost of the full rebuild (and not the cost of the bring	forward)	1		
Available Fault Level (MVA)				
	Scenario	Existing	2029-30	2034-35
Available fault level in this REZ is dominated by planting of solar PV from the mid-2019-20s and influenced by VRE	Central	At line it	-800	-850
development and remediation of nearby REZs.	Step	At limit	-500	-800
System Strength Remediation Augmentation				
The system strength remediation augmentation proposed for r	nearby REZ Q1 w	ould also resolve t	he remediation rea	uirements.

Q5 – Barcaldine

Summary

The Barcaldine REZ is situated in Central Queensland. This REZ has excellent solar resources and moderate wind resources. The existing 350 km 132 kV line to Barcaldine from Lilyvale, via Clermont, cannot support any large–scale generation developments. A possible investment option is to build a double-circuit 275 kV line from the main backbone at Lilyvale extending inland to Barcaldine.

Even after this upgrade, the MLFs will decline sharply because the generation is located a significant distance from load.

REZ Assessment

N/A

Barcaldine REZ does not have any projected development.

Renewable Resources

Resource	Solar			Wind			
Resource Quality	A C						
Renewable Potential (MW)	8,000				3,900		
Domand Covalation	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demand Correlation	F	F	F	E	D	С	

Climate Hazard

Temperature Score	D	Bush Fire Score	С

	Solar PV (MW)					Wind (MW)					
	Existing/	Existing/ Projected Existing/	Existing/ Projected		Projected						
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40			
Central											
Step		The modelling outcomes, for all There is no existing or committed wind									
Fast	34	scenarios,	did not project	tadditional	REZ. The mo	ere is no existing or committed wind generation in thi Z. The modelling outcomes, for all scenarios, did not					
High DER		solar g	eneration for t	NIS KEZ.	project additional wind generation for this REZ.						
Slow											

Storage					
Barcaldine REZ has not been identified as having significan		Suggested Storage for REZ (MW)			
hydro capability. ISP modelling does not project any VRE for large cost required to augment this network. For this reaso suggested within this zone.			REZ has not been s oss any scenario in		
Existing Network Capability					
Description			ate Existing Capacity	Loss Factor Robustness	
This REZ is connected with a Lilyvale–Clermont–Barcaldine line length is approximately 350 km.	132 kV line. The total		_	F	
Associated Interconnector Augmentations					
Description	Additional Ho	osting Capacity	Loss Factor Robustness		
There are no associated interconnector augmentations wit	h this REZ.				
Possible REZ Augmentations					
Description	Additional Hosting Capacity	Upgrade Co Estimate	evelopment		
Augmentation Option 1:					
 To connect generation within Barcaldine REZ: Establish a new 275 kV substation within Barcaldine REZ, location to be determined by interest in the area A new double-circuit 275 kV line connecting the new substation to Lilyvale 	+700 – 900 MW	\$490 million \$910 million		ified as required ny scenario	
Available Fault Level (MVA)					
	Scenario	Existing	2029-30	2034-35	
Available fault level in this REZ is influenced by development of nearby REZs.	Central	600	350	350	
	Step	600	400	-50	
System Strength Remediation Augmentation					
Remediation not required with forecast level of VRE in the	Central and Step Change	e scenarios.			

Q6 – Fitzroy

Summary

The Fitzroy REZ is in Central Queensland and covers a strong part of the network where Gladstone and Callide generators are connected. This REZ has good solar and wind resources. There is no wind or solar generation in service or committed in this REZ.

Currently the limitation for connection within this REZ and REZ Q1 to Q4 is due to voltage and transient stability along the cut-set CQ–SQ (Central Queensland to Southern Queensland). This is projected to limit optimal generation expansion connected north of this cut-set to 2,000 to 2,500 MW. This limit could be increased by the exit of Callide B (expected in the late 2020s) and Gladstone (in the mid–late 2030s).

See Appendix 3 for more information on the Central to Southern Queensland network expansion project.

REZ Assessment

Phase 1 and phase 3 REZ

Fitzroy REZ has development in phase 1 and phase 3. The development in Fitzroy in phase 1 occurs to meet the QRET. Further development in this region is facilitated by upgrades to the Central to Southern Queensland (CQ–SQ) cut-set and the Gladstone Grid Reinforcement.

Renewable Resources

Resource		Solar			Wind		
Resource Quality	В				В		
Renewable Potential (MW)		7,700			3,500		
Demond Correlation	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demand Correlation	F	F	F	С	В	В	
Climate Hazard							

Temperature Score	C	Bush Fire Score	В

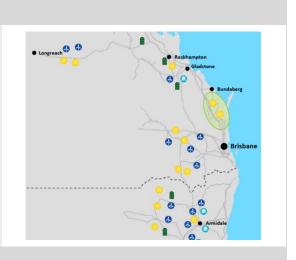
		Solar PV	′ (MW)		Wind (MW)				
	Existing/		Projected		Existing/	Projected			
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40	
Central		1,350	1,350	1,350		800	800	900	
Step	There is no existing or	0	0	0	There is no existing or	500	900	900	
Fast	committed solar	0	0	0	committed wind	0	900	900	
High DER	generation in this REZ.	800	800	800	generation in this REZ.	650	650	900	
Slow		0	0	0		0	0	0	

Storage

	Suggested Storage for REZ (MW)						
				Projected			
		Depth	2029-30	2034-35	2039-40		
	Central		0	0	1,250		
Potential pumped hydro locations have been identified near Bouldercombe and Calvale. There is a significant projection in solar and wind generation north of the CQ–SQ cut-set. Significant transmission build would be required to accommodate such a large projection of VRE	Step		50	50	50		
	Fast	Shallow	0	0	300		
	High DER		0	0	0		
	Slow		0	0	200		
eneration. Having storage located within this Z would assist in reducing the capacity	Central		0	400	400		
quired for the transmission augmentation to onnect the VRE in northern and central	Step		250	550	550		
ueensland, to the load in southern ueensland. Storage would also assist in firming	Fast	Medium	0	50	50		
the VRE generation.	High DER		0	0	0		
orage, of all depth classes, including batteries ad pumped hydro, has been suggested for this	Slow		0	0	0		
one, except for High DER.	Central		0	0	0		
	Step		0	50	450		
	Fast	Deep	0	0	0		
	High DER		0	0	0		
	Slow		0	0	0		

Existing Network Capability

Description	Approximate Existing Hosting Capacity	Loss Factor Robustness
This REZ is connected via a meshed 275 kV network ranging between Bouldercombe, Gladstone and Callide/Calvale. The spare hosting capacity of approximately 2,000 - 2,500 MW includes any generation that would connect to Q1, Q2, Q3, Q4, Q5 and Q6.	2,000 MW - 2,500 MW	A
Associated Interconnector Augmentations		
Description	Additional Hosting Capacity	Loss Factor Robustness
There are no associated interconnector augmentations with this REZ.		


Possible R	EZ Augmentations				
Descriptio	n	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness
Augmente	ation Option 1:				
	Southern Queensland minor augmentation the transient stability limit +300 MW)		\$30 million	Not identified as being	
	ish a new 275 kV Auburn River substation mid– between Calvale and Halys	+300 MW	to \$60 million	required under any ISP	-
	ooth Calvale–Halys 275 kV lines into the Auburn substation			scenario	
Augmentation Option 2:			\$300 million	Central, High DER, Fast and	
• Build	 Central to Southern Queensland augmentation Build a double-circuit 275 kV line from Calvale to Wandoan South 		to \$560 million	Step change (early to mid2030s)	A
Available	Fault Level (MVA)				
Available fa	ault level in this REZ is dominated by planting of	Scenario	Existing	2029-30	2034-35
wind and s	olar PV from the late 2020s. Pumped hydro in the e scenario is expected to form part of the system	Central	600	-400	-200
strength re	mediation.	Step	600	400	200
System Str	rength Remediation Augmentation				
	Description	ption		Co	st
Central	Establish 1 x 125 MVAr synchronous condenser.		2027-28	\$40 million to \$55 million	
Step	Remediation not required with forecast level of VI Change scenario.	-	-		

Q7 - Wide Bay

Summary

Due to interest in and around the wide bay area, this new Wide Bay REZ candidate has been included for the 2020 ISP. This new REZ expands across the 275 kV network around Woolooga and Teebar Creek. It also includes the 132 kV network around Maryborough, Isis and Aramara.

The Wide Bay area has moderate solar resources with Childers (56 MW) and Susan River Solar Farm (75 MW) operational within this zone.

REZ Assessment

N/A

Wide Bay REZ does not have projected REZ phase development. Development of renewable generation in this REZ occur in the mid-2029-30s within the spare network capacity.

Renewable Resources

Resource	Solar			Wind		
Resource Quality	С			D		
Renewable Potential (MW)	2,200 1,100			1,100		
Demand Covalation	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40
Demand Correlation	F	F	F	С	В	В
Climate Hazard						

Temperature Score	В	Bush Fire Score	

Variable Renewable Energy Outlook

	Solar PV (MW)				Wind (MW)				
	Existing/ committed	Projected			Existing/	Projected			
		2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40	
Central		0	0	200		0	0	300	
Step		0	200	200	There is no existing or	300	300	300	
Fast	131	0	500	500	committed wind	0	0	0	
High DER		0	0	200	generation in this REZ.	0	0	300	
Slow		0	0	0		0	0	0	
Storage									

Wide Bay REZ has not been identified as having significant potential pumped hydro capability. No storage is suggested for this REZ in the ISP.

Suggested Storage for REZ (MW)

Е

Wide Bay REZ has not been suggested for storage across any scenario in the 2020 ISP.

Existing Network Capability						
Description				ximate Hosting acity	Loss Factor Robustness	
The Wide Bay REZ is connected via 275 kV lines between Woolooga, South Pine, Teebar Creek and Gin Gin.				MW	A	
Associated Interconnector Augmentations						
Description	Addition Cap		Loss Factor Robustness			
There are no associated interconnector augmentations with th	is REZ.					
Possible REZ Augmentations						
Description	Additional Hosting Capacity		Upgrade Cost Estimate		ISP Development	
 Augmentation Option 1: Rebuild Woolooga–Palmwoods–South Pine as a double-circuit 275 kV line 	+900 M	W	\$270 million to \$510 million		Not identified as being required under any ISP scenario	
 Augmentation Option 2: Rebuild Woolooga–South Pine as a double-circuit 275 kV line 	+900 M	W	\$250 million to \$470 million		Not identified as being required under any ISP scenario	
Available Fault Level (MVA)						
	Scenario	E	kisting	2029-30	2034-35	
Available fault level in this REZ is influenced by development of nearby REZs.	Central		1,000	900	950	
	Step	1,000		1,600	850	
System Strength Remediation Augmentation						
Remediation not required with forecast level of VRE in the Cen	tral and Step C	hange.				

Q8 - Darling Downs

Summary The Darling Downs REZ covers a wide area in Southern Queensland. This REZ not only has good solar and wind resources, it also has a strong network with good potential to connect renewable generation. Currently this REZ has approximately 840 MW of generation connected Brisbane or committed, almost evenly split between wind and solar. 1 The Darling Downs REZ is situated close to the Brisbane load centre and has good access to the New South Wales - Queensland interconnector. Upgrades to the New South Wales – Queensland interconnector, such as QNI Medium and QNI Large would further improve this REZ's ability to connect renewable generation. Sydney **REZ Assessment** Darling Downs REZ has development in phase 1 and phase 3. The development in Darling Downs in Phase 1 and phase 3 REZ phase 1 occurs to meet the QRET, utilising existing network capacity. Further development in this region is supported by QNI Medium and QNI Large. **Renewable Resources** Resource Solar Wind **Resource Quality** В В Renewable Potential (MW) 7,700 5,600 2019-20 2029-30 2039-40 2019-20 2029-30 2039-40 Demand Correlation F F С С В F **Climate Hazard Temperature Score** С **Bush Fire Score** Е Variable Renewable Energy Outlook D) / / A A A

	Solar PV (MW)				Wind (MW)			
	Existing/ committed	/ Projected		Existing/	Projected			
		2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40
Central		350	350	1,150		1,400	1,400	3,950
Step		1,150	4,950	7,100		1,650	3,850	5,300
Fast	399	0	1,000	4,400	440	500	1,650	5,150
High DER		1,700	1,700	2,200		500	500	2,950
Slow		0	0	0		500	500	500

Storage

	Suggested Storage for REZ (MW)					
		Death	Projected			
		Depth	2029-30	2034-35	2039-40	
	Central		0	0	550	
Large-scale solar and wind generation is projected in the Darling Downs area. Darling Downs has good	Step		250	300	300	
network access to the Brisbane load centre as well as the load in New South Wales via the Queensland to New South Wales interconnector.	Fast	Medium	0	500	600	
Storage in this location would be beneficial to help firm the solar generation projected for this REZ.	High DER		0	0	0	
No storage is suggested under the Slow Change and High DER scenarios for Darling Downs, under the	Slow		0	0	0	
High DER scenarios for Darling Downs, under the Slow Change no storage is projected for Queensland and very limited storage is projected for High DER.	Central	Deep	0	0	0	
	Step		0	0	0	
	Fast		0	0	500	
	High DER		0	0	0	
	Slow		0	0	0	
Existing Network Capability						
Description		Approximate Ex Capa			oss Factor obustness	
This is the only REZ in Queensland that has access to the network at 330 kV. The Darling Downs REZ also connect load centre via three 275 kV lines: one from Middle Ric one from Tarong to Blackwall and one from Tarong to	cts to the Brisbane Ige to Greenbank,	3,000	MW		A	

Associated Interconnector Augmentations

Description	Additional Host	Loss Factor Robustness		
QNI Medium Option 2E (Preparatory Activities Re A new 500 kV interconnector from Western Downs in O Boggabri to a new substation near Wollar in New Sout	+1,000	MW	A	
QNI Large Option 3E (Preparatory Activities Requ A second 500 kV interconnector from Western Downs Boggabri to the Wollar area in New South Wales.	+1,000	MW	A	
Possible REZ Augmentations				
Description	Additional	Upgrade Cost		looment

	Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development
Augmentation Option 1:		+1,000 - 1,300 MW	\$180 million to	Not identified as required under
	• 3rd 330/275 kV transformer at Middle Ridge	+ 1,000 - 1,300 10100	\$340 million	any 2020 ISP scenario

• Bulli Cre line	eek–Millmerran–Middle Ridge 330 kV				
Available F	ault Level (MVA)				
Available fau	It level in this REZ is dominated by planting of	Scenario	Existing	2029-30	2034-35
wind and sol	ar PV from the late 2020s. Pumped hydro in the ted to form part of the system strength solution	Central	1,650	-200	1,650
for this REZ.		Step	1,650	1,100	-5,350
System Stre	ngth Remediation Augmentation				
	Description		Date Required	Co	ost
Central	Remediation not required with forecast level of Central scenario.	-	-		
Step	Establish 4 x 250 MVAr synchronous condens	sers.	2032-33	\$180 million to	o \$230 million

A5.4.4 South Australia REZ scorecards

S1 – South East SA

Summary

The South East South Australia REZ has moderate to good quality wind resources. Over 300 MW of wind farms at Canunda and Lake Bonney are in service.

This REZ lies on the major 275 kV route of the South Australia-Victoria Heywood interconnector. The existing network can only effectively accommodate a small amount of additional generation. Beyond this 55 MW hosting capacity, transmission network expansions would be required to accommodate generation within this zone. Network augmentations would be smaller if generation is located relatively close to Adelaide, and larger if located further south towards Mount Gambier.

The MLF is sensitive to additional generation because the REZ is not close to any major load centres.

REZ Assessment

Phase 3 REZ	South East SA has development in phase 3. A future grid project within the South East REZ will need to
Phase 3 REZ	be developed to facilitate the VRE development projected within this zone.

Renewable Resources

Resource		Solar		Wind				
Resource Quality	D		C					
Renewable Potential (MW)		100			3,200			
Domand Cowelstian	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40		
Demand Correlation	F	F	F	С	С	С		

Climate Hazard

Temperature Score	D	Bush Fire Score	D
-------------------	---	-----------------	---

	Solar PV (MW)			Wind (MW)				
	Existing/	ing/ Projected		Existing/	Projected			
	committed	committed 2029-30 2034-35 2039-40 com	committed	2029-30	2034-35	2039-40		
Central						0	0	800
Step		The modelling outcomes, for all95scenarios, did not project additional325	6		50	300	800	
Fast	95		325	0	50	800		
High DER		solar g	solar generation for this REZ.			0	0	600
Slow				0	0	0		

Storage						
South East SA REZ is not considered to have potential for signi		Sugge	sted Storage for RI	Z (MW)		
hydro generation, for this reason no pumped hydro has been a region. This REZ is projected for medium scale wind developm other storage has been suggested for this REZ.		South East SA has not been suggested for stora in any scenario in the 2020 ISP.				
Existing Network Capability						
Description			Approximate Existing Hosting Capacity			
Presently the network capacity is limited. Any additional generators compete with the flows on the Heywood interconnector.	ation would	5	5 MW	-		
Associated Interconnector Augmentations						
Description		Additional Hosting Capacity Coss Factor Robustness				
There is no interconnector augmentation on the optimal devel	opment path associ	ated with this RE	Z.			
Possible REZ Augmentations						
Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness		
Augmentation Option 1 ^A :			Central			
To strengthen connection to Adelaide:			(2037-38), Step Change			
 Install an additional 275 kV line by stringing the vacant circuit on Tailem Bend–Tungkillo, including any additional reactive support 		\$20 million to \$80 million	(2030-31), Fast Change	-		
 Where necessary manage generation with control schemes such as runback schemes. 			(2037-38), High DER (2039-40)			
 Additional 275 kV transmission lines may be required between Ta would depend on the location of the generation. 	ilem Bend and generat	tion interest within	the zone. This augment	ation and costing		
Available Fault Level (MVA)						
Available fault level in this REZ is influenced by development	Scenario	Existing	2029-30	2034-35		
of nearby REZs.	Central	At limits ^B	150	-1,000		
Remediation of S1, S2, S3 and S4 can be addressed by joint solutions.	Step	At limits ^B	-1,650	-2,450		
B. Shortfalls in this area are managed by directions of synchronous u	inits and constraints to	existing VRE gener	ration.			
System Strength Remediation Augmentation						

Remediation requirements shown for this REZ are due to expansion of VRE in neighbouring REZs and are met through a joint solution reported in REZ S2.

S2 - Riverland

Summary

The Riverland REZ is on the South Australian side of the proposed Project EnergyConnect route. It has good solar quality resources. There is minimal existing renewable generation in the zone.

Prior to Project EnergyConnect, approximately 200 MW can be connected in this REZ. Once Project EnergyConnect is commissioned (2024-25), approximately 800 MW can be accommodated. Additional generation beyond 1,000 MW is not practical without extensive further network upgrades between Riverland and South Australia's neighbouring states.

REZ Assessment

Phase 2 REZ

Riverland REZ has development in phase 2. VRE development in this REZ is supported by the commissioning of Project EnergyConnect by 2024-25, an actionable ISP project.

Renewable Resources

Resource	Solar				Wind			
Resource Quality	В			E				
Renewable Potential (MW)	4,000		1,400					
Domand Completion	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40		
Demand Correlation	F	F	F	С	С	С		

Climate Hazard

Temperature Score	E	Bush Fire Score	С
-------------------	---	------------------------	---

	Solar PV (MW)				Wind (MW)				
	Existing/	•	Existing/		Projected				
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40	
Central		0	1,000	1,000					
Step	There is no existing or	1,000	1,000	1,000		There is no existing or committed wind generation i			
Fast	committed solar	0	1,000	1,000	REZ. The mo	delling outcon	nes, for all scen	arios, did not	
High DER	generation in this REZ.	0	0	1,000	project a	dditional wind	generation for	this KEZ.	
Slow		0	0	1,000					

Storage

ISP modelling has generally demonstrated benefits in co-locating solar generation with shallow-to-medium storages. There is a large projection of solar generation for this REZ which makes it a great candidate for storage. Locating storage within this REZ will firm up supply within the area and reduce the scale of network augmentations required to transfer this energy to the load centres.

Since this REZ does not have significant potential for pumped hydro, battery storage of shallow and medium depth has been suggested, for this REZ across all scenarios except for High DER. Under the High DER scenario, no storage is projected for South Australia.

	Suggested Storage for REZ (MW)							
	Dauth		Projected					
	Depth	2029-30	2034-35	2039-40				
Central		0	100	150				
Step	Shallow	0	0	0				
Fast		0	0	100				
High DER		0	0	0				
Slow		0	0	150				
Central		0	0	150				
Step		0	0	50				
Fast		0	0	150				
High DER		0	0	0				
Slow		0	0	200				

Existing Network Capability

Description	Approximate Existing Hosting Capacity	Loss Factor Robustness
Presently the network capacity is limited, any additional generation would effectively be competing with the flows on the Murraylink interconnector.	200 MW	F
Associated Interconnector Augmentations		
Description	Additional Hosting Capacity	Loss Factor Robustness
Project EnergyConnect (Actionable ISP project): A new 330 kV interconnector between Robertstown in South Australia and Wagga Wagga in New South Wales, via Buronga.	+800 MW	A

Possible REZ Augmentations

Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness
 Augmentation Option 1^: Assumes new interconnector Project EnergyConnect in service: Establish a new substation in the Riverland REZ close to the new interconnector Turn both Robertstown–Bundey–Buronga 330 kV lines into the new substation Install necessary transformation 	+800 MW	\$60 million to \$110 million	Central (2032-33), Step Change (2026-27), Fast Change (2030-31), High DER and Slow Change (2037-38)	A

A. Control schemes may be required to manage network conditions after a contingency.

Available	Fault Level (MVA)				
	ult level in this REZ is influenced by planting of solar	Scenario	Existing	2029-30	2034-35
	e mid-2030s.	Central	At limits ^A	250	-1,250
Remediation of S1, S2, S3 and S4 can be addressed by joint solutions.		Step	At limits ^A	-1,650	-1,600
A. Shortfa	Ils in this area are managed by directions of synchronous units a	ind constraints to e	existing VRE generation	on.	
System Str	ength Remediation Augmentation				
	Description	Date Required	Cost		
Central	Remediation not required with forecast level of VRE in scenario.	n the Central	-	-	
Step	Establish 2x 125 MVAr synchronous condensers	synchronous condensers		\$85 million to \$110 million	

S3 – Mid–North SA

Summary Broken Hill The Mid–North SA REZ has moderate quality wind and solar resources. 0 There are several major wind farms in service in this REZ, totalling 952 MW, including Hallett, Hornsdale, Starfish Hill, Waterloo and Willogoleche. Four 275 kV circuits pass through the REZ, and about 1,000 MW of additional generation can be accommodated through this corridor. However due to the network configuration, any generation north and west of this REZ contributes to this 1,000 MW limit. For this reason, an aggregate limit for South Australia of 1,000 MW applying to S3, S5, S6, S7, S8 and S9 has been set (see section A5.3.4). Due to the VRE projection in Roxby Downs and Mid-North, transmission augmentation is required to strengthen the network between Davenport and Para. This transmission augmentation has been identified as a future ISP project, no further action is required until the 2022 ISP. **REZ Assessment**

Mid–North REZ has development in phase 3. Transmission augmentation strengthening 275 kV network between Davenport and Para is required to support the VRE projection in the Mid-North REZ and Roxby Downs REZ. This augmentation assists in transferring the power from these REZs to the load centres, to Victoria via the Heywood and Murraylink interconnectors, and to New South Wales via Project EnergyConnect.

Renewable Resources

Resource	Solar			Wind			
Resource Quality	С			С			
Renewable Potential (MW)		1,300		4,600			
Demand Correlation	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demana Correlation	F	F	F	С	С	С	

Climate Hazard

|--|

		Solar PV (MW) Existing/ committed				Wind				
	Existing/		Projected		Existing/	Projected				
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40		
Central						0	500	800		
Step	These is a suit	There is no existing or committed solar generation in this REZ. The modelling outcomes, for all scenarios, did not project additional solar generation for this REZ.				850	850	1,200		
Fast	REZ. The mod				952	0	150	1,200		
High DER	project ad					0	0	250		
Slow						0	0	50		

Storage							
Mid–North SA has moderate wind projections across all ISP scenarios. Mid- North does not have significant potential for pumped hydro generation.			Sugge	Suggested Storage for REZ (MW)			
There is on operational battery in the Mid-North REZ – Hornsdale (100 MW/129 MWh).				has not been sugge ny scenario in the 20	-		
Existing N	etwork Capability						
Descriptio	n			Existing Hosting pacity	Loss Factor Robustness		
oad centre the future l	t network is limited by the 275 kV lines which supply and provides a transfer path to the Heywood interd Project EnergyConnect interconnector. The current s approximately 1,000 MW is for all the generation co S8 and S9.	connector and spare network	1,00	00 MW	A		
Associate	d Interconnector Augmentations						
Descriptio	n	Additional H	osting Capacity	Loss Factor Robustness			
There are r	no associated interconnector augmentations with thi	is REZ.					
Possible R	EZ Augmentations						
Description		Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness		
Augmente	ation Option 1:						
S8 and S9 t path to bot interconne these REZs required: • Rebui	SA 275 kV network connects REZs S3, S5, S6, S7, to the Adelaide load centre as well as provides a th the Heywood and Project EnergyConnect ctors. When the combination of generation in exceeds 1,000 MW the following upgrade is Id Davenport–Brinkworth–Templers West–Para V line as a high capacity double-circuit line	+1,000 MW	\$420 million to \$770 million	Central, Step and Fast (2036-2038)	A		
• Recor	figure the 132 kV network in the Mid–North n to balance flows						
Available	e Fault Level (MVA)						
Available fault level in this REZ is influenced by projected development utility solar from the mid-2030s and wind from the late-2020s in the step. Remediation of S1, S2, S3 and S4 can be addressed by joint solutions.		Scenario	Existing	2029-30	2034-35		
		Central	At limits ^A	-550	-1,000		
		Step	At limits ^A	-1,650	-2,450		
	alls in this area are managed by directions of synchronous urength Remediation Augmentation	units and constraints	to existing VRE gene	eration.			
	Description		Date Required	C	ost		
Central	Establish 3 x 125 MVAr synchronous condensers.		2032-33	\$130 million t	o \$165 million		
				\$130 million to \$165 million \$85 million to \$110 million			

S4 – Yorke Peninsula

Summary

The Yorke Peninsula REZ has good quality wind resources. The Wattle Point (90 MW) wind farm lies within this REZ.

A single 132 kV line extends from Hummocks to Wattle Point (towards the end of Yorke Peninsula). Transmission augmentation would be required to connect any significant additional generation in this REZ.

This REZ is part of the South Australia group constraint (see section A5.3.4).

REZ Assessment

N/A	The VRE development in Yorke Peninsula REZ has not been identified in any REZ phase development.

Renewable Resources

Resource		Solar			Wind			
Resource Quality		С			С			
Renewable Potential (MW)		_		1,400				
Demond Completion	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40		
Demand Correlation	F	F	F	С	С	С		
Climate Hazard								

|--|

					Wind (MW)				
	Existing/		Projected		Existing/		Projected		
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40	
Central						0	0	600	
Step	These is a suit				460 ⁴	0	0	600	
Fast	There is no exis REZ. The mod	lelling outcome	es, for all scena	arios, did not		0	0	400	
High DER	project ad	iditional solar <u>(</u>	tional solar generation for this REZ.			0	0	0	
Slow	1					0	0	0	

Storage						
Yorke Peninsula does not have potential for significant pum	ped hydro	Suggested Storage for REZ (MW)				
generation. Small to medium scale wind development occur zone and hence no storage has been suggested for this REZ	rs within this	Yorke Peninsula has not been suggested for storag under any scenario for the 2020 ISP.				
Existing Network Capability						
Description			Existing Hosting pacity	Loss Factor Robustness		
The REZ connection is via the 132 kV circuit from Hummock there is no spare capacity available on this network.	s. Currently,		_	F		
Associated Interconnector Augmentations						
Description		Additional H	osting Capacity	Loss Factor Robustness		
There are no associated interconnector augmentations with	this REZ.					
Possible REZ Augmentations						
Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness		
Augmentation Option 1:						
Increase capacity to Yorke Peninsula:			Central and Fast			
Establish a 275 kV substation near connection interest in Yorke Peninsula	+800 - 1,000 MW	\$190 million to \$350 million ^B	Change ^c (2035-36),	С		
 Build a double-circuit 275 kV line from Blythe West into Yorke Peninsula (location would be dependent on wind connection interest) 	1,000 1111	\$550 million	Step Change (2037-38)			
Augmentation Option 2:						
Increase capacity to Yorke Peninsula:						
• Establish a 132 kV substation at Blythe West		1. a.a	Not identified as			
• Establish a new 132 kV substation near generation interest within Yorke Peninsula (location would be dependent on wind connection interest)	+400 - 450 MW	\$160 million to \$300 million ^B	being required under any ISP scenario	-		
Build a double-circuit 132 kV Blythe West to the new substation						
B. Cost dependant on the location of the wind generation interest.C. Fast Change Scenario only requires a single-circuit line.						
Available Fault Level (MVA)						
Available fault level in this REZ is influenced by planting of	Scenario	Existing	2029-30	2034-35		
wind in the step from the late 2020s. Remediation of S1, S2, S3 and S4 can be addressed by joint	Central	At limits ^D	-150	-1,250		
solutions.	Step	At limits ^D	-1,550	-1,550		
D. Shortfalls in this area are managed by directions of synchronou	us units and constra	aints to existing VRE	generation.			
System Strength Remediation Augmentation						

Remediation requirements shown for this REZ are due to expansion of VRE in neighbouring REZs, and are met through a joint solution reported in REZ S3.

S5 – Northern SA

Summary

The Northern SA REZ has good solar and moderate wind resources. Over 1,100 MW of new generation has been proposed, with a diverse mix of solar thermal, wind, solar PV, and pumped hydro.

About 1,000 MW of additional generation can be accommodated in this REZ. The capability of this zone to accommodate new generation is also subject to the Mid-North group constraints. This REZ is part of the South Australia group constraint (see section A5.3.4). The REZ is close to the major load centre at Adelaide and the MLFs are robust to increases in generation.

REZ Assessment

N/A

Northern SA REZ does not have any projected development.

Renewable Resources

Resource	Solar		Wind			
Resource Quality	В		С			
Renewable Potential (MW)		3,000		200		
Daman d Camaladar	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40
Demand Correlation	F	F	F	С	С	С

Climate Hazard

|--|

		Solar PV	′ (MW)		Wind (MW)				
	Existing/		Projected		Existing/	Projected			
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40	
Central									
Step		The me	The sead line extension for all			The modelling outcomes for all separies			
Fast	220	scenarios,	The modelling outcomes, for all scenarios, did not project additional solar generation for this REZ.		212	The modelling outcomes, for all scenarios, did not project additional wind generation for this REZ.			
High DER		solar g							
Slow									

Storage

		Sugge	ested Storage fo	r REZ (MW)		
	Central Step Fast High DER Slow Central Step	.	Projected			
		Depth	2029-30	2034-35	2039-40	
Northern SA and Leigh Creek are the only REZs in	Central		0	150	250	
A with substantial pumped hydro resources. South Australia does not have any pumped hydro	Step		0	0	0	
torage projected across any scenario.	Fast	Shallow	0	0	150	
Despite no projection of wind or solar generation growth, this REZ is favourably located with respect to other REZs and the management of the Mid–North group limit. As a result, this REZ is an ideal candidate for storage and is suggested for storage in all scenarios except for the High DER scenario, (no storage is projected in South	High DER		0	0	0	
	Slow		0	0	200	
	Central		0	0	250	
ustralia for the High DER scenario).	Step		0	0	100	
	Fast	Medium	0	0	250	
	High DER		0	0	0	
	Slow		0	0	250	
existing Network Capability						
escription			Approxima Hosting C		Loss Factor Robustness	
he current 275 kV network around Davenport and	Cultana can ac	commodate	1.000		С	

С

А. This assumes minor network augmentation and appropriate control schemes will be in place

Associated Interconnector Augmentations	
---	--

approximately 1,000 MW.

Description	Addition Cap	Loss Factor Robustness	
There are no associated interconnector augmentations with this REZ.			
Possible REZ Augmentations			
Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development
Augmentation Option 14: For generation interest around Cultana: • Uprate the existing 275 kV lines between Cultana and Davenport	+200 MW	\$35 million ^a	Not identified as being required under any ISP scenario
Augmentation Option 2 ^b : • Build a new 275 kV Davenport–Cultana double-circuit line	+1,200 MW	\$110 million to \$200 million	Not identified as being required under any ISP scenario
 Augmentation Option 3^A: Build a new 275 kV Davenport–Cultana single-circuit line 	+600 MW	\$90 million to 170 million	Not identified as being required under any ISP scenario

A.

Advised by ElectraNet. Additional augmentation is required in Mid-North when the combination of generation in S3, S5, S6, S7, S8 and S9 >1,000 MW. В.

Available Fault Level (MVA)

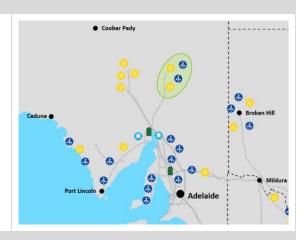
	Scenario	Existing	2029-30	2034-35
Available fault level in this REZ is influenced by development of nearby REZs.	Central	At limits ^c	-750	-1,950
	Step	At limits ^c	-1,400	-1,700

C. Shortfalls in this area are managed by directions of synchronous units and constraints to existing VRE generation.

System Strength Remediation Augmentation

Remediation not required with forecast level of VRE in the Central and Step Change scenarios.

S6 – Leigh Creek


Summary

The Leigh Creek REZ is located between 150 and 350 km north east of Davenport. It has excellent solar resources and good wind resources. There has also been high-level consideration of the potential for geothermal in this REZ.

This REZ is currently supplied with a single 132 kV line that does not have material spare capacity. A possible augmentation could involve extending the 275 kV network from Davenport to this REZ.

The MLF would still decline rapidly with new generation, due to the distance from any major load centre.

This REZ is part of the South Australia group constraint (see section A5.3.4).

REZ Assessment

N/A

Leigh Creek REZ does not have any projected development.

Renewable Resources

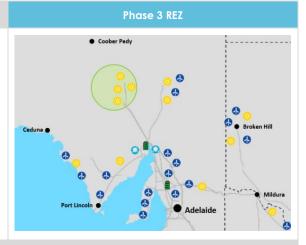
Resource		Solar			Wind	
Resource Quality		А			В	
Renewable Potential (MW)		6,500			2,400	
	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40
Demand Correlation	F	F	F	С	С	D

Climate Hazard

Temperature Score	D	Bush Fire Score	C

		Solar P	/ (MW)			Wind	(MW)	
	Existing/		Projected		Existing/		Projected	
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40
Central								
Step	There is no exis	ting or comm	ittad color good	aration in this	There is no ov	visting or comp	nitted wind ger	aration in this
Fast	REZ. The mod	elling outcom	es, for all scena	rios, did not	REZ. The mo	delling outcon	nes, for all scen	arios, did not
High DER	project ad	iditional solar	generation for 1	INIS REZ.	project a	idditional wind	generation for	this Rez.
Slow								
Storage								
5	REZ has potentia		, ,		Su	ggested Store	age for REZ (N	NW)
developmen	vever is weak and its without signific projected for Leig sted.	cant transmiss	ion augmentati	on. There is	Leigh Creek ha		ggested for sto the 2020 ISP.	rage under any

Existing Network Capability				
Description		ate Existing Capacity	Loss Fact	or Robustness
Leigh Creek REZ is connected via a single-circuit 132 kV line from Davenport. There is no spare capacity available on this network.		-		F
Associated Interconnector Augmentations				
Description		al Hosting bacity	Loss Fact	or Robustness
There are no associated interconnector augmentations with this REZ.				
Possible REZ Augmentations				
Description		Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development
 Augmentation Option 1^A: Build a new 275 kV substation at Leigh Creek Build a new 275 kV Davenport/Wilmington–Leigh Creek double-ci 	rcuit line	+1,000 MW	\$340 million to \$630 million	Not identified as being required under any ISP scenario
Augmentation Option 2: Build a new 275 kV substation at Leigh Creek Build a new 275 kV Davenport/Wilmington–Leigh Creek single-circ	cuit line	+500 MW	\$280 million to \$510 million	Not identified as being required under any ISP scenario
A. Additional augmentation is required in Mid-North when the combination o	f generation in Sa	3, S5, S6, S7, S8 and	d S9 >1,000 MW.	
Available Fault Level (MVA)				
	Scenario	Existing	2029-30	2034-35
Available fault level in this REZ is influenced by development of nearby REZs.	Central	At limit	-750	-1,950
Remediation of S6, S7, S8 and S9 can be addressed by joint solutions.	Step	At limit	-700	-1,400
System Strength Remediation Augmentation				
Remediation not required with forecast level of VRE in the Central and	Stop Change of	oparios		


S7 – Roxby Downs

Summary

The Roxby Downs REZ is located a few hundred kilometres north west of Davenport. It has excellent solar resources. The only significant load in the area is the Olympic Dam and Carrapateena mines. This REZ is currently connected with a 132 kV line and privately owned 275 kV line from Davenport. ElectraNet is in the process extending the 275 kV system to develop a new 275/132 kV connection point at Mount Gunson South to service OZ Minerals' new and existing mines in the area.

Once new generation exceeds the major size of the load in the area, the MLF in this area is likely to decline rapidly due to the distance from any major load.

This REZ also forms part of the South Australia group constraint (see section A5.3.4).

REZ Assessment

Phase 3 REZ

Roxby Downs REZ has development in phase 3. Transmission augmentation strengthening 275 kV network between Davenport and Para is required to support the VRE projection in the Mid-North REZ and Roxby Downs REZ.

Renewable Resources

Resource		Solar			Wind	
Resource Quality		А			D	
Renewable Potential (MW)		3,400			_	
Demand Correlation	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40
Demana Correlation	F	F	F	С	С	С

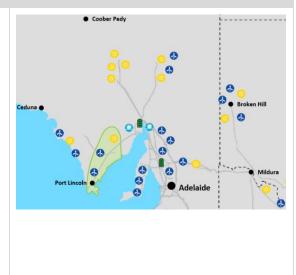
Climate Hazard

Temperature Score	E	Bush Fire Score	С
-------------------	---	-----------------	---

		Solar PV	/ (MW)			Wine	d (MW)	
	Existing/		Projected		Existing/		Projected	
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40
Central		0	500	500				
Step	There is no existing or	150	150	350	T I	•		
Fast	committed solar	850	850	850	REZ. The mo	odelling outco	mitted wind gen mes, for all scer	arios, did not
High DER	generation in this REZ.	0	750	750	project a	additional win	d generation fo	r this rez.
Slow		0	0	950				

Storage					
	ns REZ is not considered to have potential for significant ration. Roxby Downs is projected to have moderate sola		Sugges	sted Storage for	REZ (MW)
growth acro	been projected nearby in the Northern SA REZ.			s REZ has not bee oss any scenario i	00
Existing Ne	twork Capability				
Description	n			Existing Hosting	g Loss Factor Robustness
	network together with a new 275 kV line between Dave son South, has a hosting capacity of 960 MW.	enport and	96	0 MW	E
Associated	d Interconnector Augmentations				
Description	n		Additional H	osting Capacity	Loss Factor Robustness
There are no	o associated interconnector augmentations with this RE	<u>Z</u> .			
Possible RE	Z Augmentations				
Description	n		Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development
• Build a	ition Option 1: a new 275 kV substation near generation interest in Rox a new 275 kV Davenport–Roxby Downs double-circuit lir	-	+1,000 MW	\$400 million to \$740 million	Not identified as being required under any ISP scenario
Following th S5, S6, S7, S • Rebuild capacit	Ifion Option 2: ne above augmentation when the combination of gener 8 and S9 >1,000 MW the following upgrade is required: d Davenport–Brinkworth–Templers West–Para 275 kV lin ty double-circuit line. figure the 132 kV network in the mid north region to bal g.	ne as a high	+1,000 MW	\$420 million to \$770 million	Central, Step and Fast (2036- 2038)
Available	Fault Level (MVA)				
Available fa	ult level in this REZ is influenced by planting of solar	Scenario	Existing	2029-30	2034-35
PV from the	e mid-2030s. n of S6, S7, S8 and S9 can be addressed by joint	Central	At limit	-750	-1,950
solutions.	n of so, sr, so and so can be addressed by joint	Step	At limit	-1,400	-1,700
System Stre	ength Remediation Augmentation				
	Description		Date Required	c	Cost
Central	Establish 2 x 125 MVAr synchronous condensers.		2030-31	\$85 million	to \$110 million
Step	Establish 2 x 125 MVAr synchronous condensers.		2030-31	\$85 million	to \$110 million

S8 – Eastern Eyre Peninsula


Summary

The Eastern Eyre Peninsula REZ has moderate to good quality wind resources. Wind farms in service include Cathedral Rocks (66 MW) and Mt Millar (70 MW) wind farms. ElectraNet has completed the Eyre Peninsula Electricity Supply RIT–T for transmission development to support this area. The AER has determined that the preferred option satisfies the requirements of the RIT–T.

The REZ is currently supplied by a single 132 kV line extending 250 km south of Cultana. Following the successful conclusion of the Eyre Peninsula Electricity Supply RIT–T in 2019, ElectraNet plans to replace the existing Cultana–Yadnarie–Port Lincoln 132 kV single-circuit line with a new double-circuit 132 kV line built at 275 kV for the Cultana to Yadnarie section.

The MLF is likely to decline rapidly with any additional generation. Even with upgrading the network halfway along the Peninsula to 275 kV and augmenting the remaining 132 kV lines, the MLF does not improve much.

This REZ is part of the South Australia group constraint (see section A5.3.4).

REZ Assessment

ΝI	/Λ

Eastern Eyre Peninsula does not have any projected development.

Renewable Resources

Resource		Solar			Wind	
Resource Quality		С			С	
Renewable Potential (MW)		5,000			2,300	
Down and Convolution	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40
Demand Correlation	F	F	F	С	С	С

Climate Hazard

|--|

		Solar PV	/ (MW)			Wind (MW)					
	Existing/		Projected			Projected					
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40			
Central											
Step	These is a suit					The second all is	odelling outcomes, for all scenarios,				
Fast		lelling outcome	es, for all scena	rios, did not	136		ect additional w				
High DER	project ad	iditional solar <u>(</u>	generation for 1	this REZ.			for this REZ.				
Slow											

	Suggested Storage for REZ (MW)				
This REZ is not considered to have potential for significant pumped hydro generation. Since no VRE is projected for this zone, no storage has been suggested for this REZ.	nsula REZ has not been suggested for oss any scenario in the 2020 ISP.				
Existing Network Capability					
Description	Approximate Existing Hosting Capacity	Loss Factor Robustness			
This REZ is connected via the 132 kV network from Cultana to Port Lincoln. capacity includes the committed rebuild of the 132 kV line from Cultana–Ya Lincoln as a double-circuit line.		470 MW	D		
Associated Interconnector Augmentations					
Description	Additional Hosting Capacity	Loss Factor Robustness			
There are no associated interconnector augmentations with this REZ.					
Possible REZ Augmentations					
Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development		
Augmentation Option 1:			Not identified a		
 Operate the Cultana–Yadnarie 132 kV line (built at 275 kV) at 275 kV by: Establishing a 275 kV substation at Yadnarie 275 (122 k)/ transformation 	+300 MW	\$45 million to \$85 million	Not identified as being required under any ISP scenario		

• 275/132 kV transformation

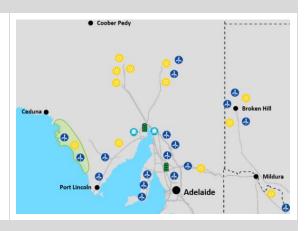
Storage

Available Fault Level (MVA)

Available fault level in this REZ is influenced by development of nearby REZs. Remediation of S6, S7, S8 and S9 can be addressed by joint solutions.	Scenario	Existing	2029-30	2034-35
	Central	At limits ^A	-750	-1,950
	Step	At limits ^A	-750	-1,400

A. Shortfalls in this area are managed by directions of synchronous units and constraints to existing VRE generation.

System Strength Remediation Augmentation


Remediation requirements shown for this REZ are due to expansion of VRE in neighbouring REZs, and are met through a joint solution reported in REZ S7.

S9 – Western Eyre Peninsula

Summary

The Western Eyre Peninsula REZ shares the same supply as the Eastern Eyre Peninsula. It has good solar and moderate wind resources. There are no generators currently connected or committed within this REZ.

This REZ is part of the South Australia group constraint (see section A5.3.4).

REZ Assessment

N/A

Western Eyre Peninsula does not have any projected development.

Resource	Solar			Wind			
Resource Quality		В		C			
Renewable Potential (MW)		4,000		1,500			
Demand Correlation	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demana Correlation	F	F	F	С	С	С	

Climate Hazard

|--|

	Solar PV (MW)				Wind (MW)					
	Existing/ committed		Projected		Existing/	Projected				
		2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40		
Central										
Step	There is no ovis	ting or commi	ttad calar gap	aration in this	There is no existing or committed wind generation in this REZ. The modelling outcomes, for all scenarios, did not project additional wind generation for this REZ.					
Fast	There is no exis REZ. The mod	elling outcome	es, for all scena	rios, did not						
High DER	project ad	ditional solar <u>c</u>	eneration for t	this REZ.						
Slow										
Storage										
This REZ is not considered to have potential for significant pumped				Suggested Storage for REZ (MW)						
hydro generation and since no VRE is projected for this zone, no storage has been suggested for this REZ.		Western Eyre Peninsula REZ has not been suggested for storage across any scenario in the 2020 ISP.								

Existing Network Capability						
Description		Approximate Existing Hosting Capacity				
There is no transmission network built to this REZ.			_	N/A		
Associated Interconnector Augmentations						
Description			Additional Hosting Los Capacity Rol			
There are no associated interconnector augmentations with this I	REZ.					
Possible REZ Augmentations						
Description		Additional Hosting Capacity ^A	Upgrade Cost Estimate	ISP Development		
 Augmentation Option 1: Establish REZ by establishing 275 kV network from Cultana/Corra Build a new 275 kV substation at Elliston Build a new 275 kV Cultana/Corraberra Hill–Elliston double- 		+1,050 MW	\$380 million to \$700 million	Not identified as being required under any ISP scenaric		
Augmentation Option 2: Establish the REZ by establishing 275 kV network from Yadnarie: Build a new 275 kV substation at Elliston Build a new 275 kV Elliston–Yadnarie single-circuit line		+300- 500 MW	\$250 million to \$460 million ^B	Not identified as being required under any ISP scenaric		
 Augmentation Option 3: Establish REZ by establishing diverse routes from the 275 kV netw Build a new 275 kV substation at Elliston Build a new 275 kV Cultana/Corraberra Hill–Elliston single-c Build a new 275 kV Elliston–Yadnarie single-circuit line 		+1,200 MW	\$560 million to \$1,040 million ^B	Not identified as being required under any ISP scenaric		
 A. Augmentation hosting capacity dependant on generation within Eastern E Cultana. B. Includes the cost for the upgrade of Cultana–Yadnarie 132 kV line to 275 	-	ional augmentation m	ay be required betw	een Yadnarie and		
Available Fault Level (MVA)						
Available fault level in this REZ is influenced by development of	Scenario	Existing	2029-30	2034-35		
nearby REZs.	At limits ^c	-750	-1,950			
Remediation of S6, S7, S8 and S9 can be addressed by joint						

C. Shortfalls in this area are managed by directions of synchronous units and constraints to existing VRE generation.

System Strength Remediation Augmentation

solutions.

Remediation requirements shown for this REZ are due to expansion of VRE in neighbouring REZs, and are met through a joint solution reported in REZ S7.

Step

-750

At limits^C

-1,400

A5.4.5 Tasmania REZ scorecards

T1 – North East Tasmania

Summary						Phase	1 REZ		
The North East Tasmania REZ has one wind farm of 168 MW (Musselroe Wind Farm) in service. After consultation, this REZ has been extended in the 2020 ISP to encompass George Town. A sufficient three phase fault level must be maintained to ensure stable operation of the Basslink HVDC interconnector. In November 2019, AEMO declared a fault level shortfall for Tasmania, including George Town in this shortfall. The fault level at George Town is likely to deteriorate as more inverter-based resources connect within this area.					0 0 0	Ballarat	Melbourne	Junceston O O Hobart	
REZ Assess	ment								
Phase 1 REZ		highlighted i by TRET whic would be ab	n phase 1. VRE ch is considered out 150% of its	development u d in the Step ar needs by 2030	levelopment of V utilises the spare ad High DER scer , unless significar either exported o	network capac narios. Under tł nt new local en	ity in this REZ ane TRET, Tasma	and is driven ania's VRE	
Renewable	e Resources								
	Resource			Solar		Wind			
						В			
I	Resource Quali	y		D			В		
	Resource Qualit wable Potential	-		D _			B 1,400		
Rene	wable Potential	(MW)	2019-20	D - 2029-30	2039-40	2019-20		2039-40	
Rene		(MW)	2019-20 F	_	2039-40 F	2019-20 C	1,400	2039-40 C	
Rene	wable Potential	(MW)		_ 2029-30			1,400 2029-30		
Rene De Climate Ha	wable Potential	(MW)		_ 2029-30		C	1,400 2029-30		
Rene De Climate Ho Tempere	wable Potential emand Correlat azard	ion	F	_ 2029-30	F	C	1,400 2029-30	C	
Rene De Climate Ha Tempere	wable Potential emand Correlat azard ature Score	ion	F	_ 2029-30	F	C Score	1,400 2029-30	C	
Rene De Climate Ha Tempere	wable Potential emand Correlat azard ature Score enewable Energ Existing/	ion gy Outlook	F	_ 2029-30	F	C Score	1,400 2029-30 C	C	
Rene De Climate Ha Tempere	wable Potential emand Correlat azard ature Score enewable Energ	ion gy Outlook	F A / (MW)	_ 2029-30	F Bush Fire	C Score	1,400 2029-30 C	C	
Rene De Climate Ha Tempere	wable Potential emand Correlat azard ature Score enewable Energ Existing/	ion gy Outlook Solar PV	F A / (MW) Projected	– 2029-30 F	F Bush Fire Existing/	C Score Wind	1,400 2029-30 C (MW) Projected	C	
Rene De Climate Ho Tempero Variable Ro	wable Potential emand Correlat azard ature Score enewable Energ Existing/ committed	ion gy Outlook Solar PV 2029-30	F A / (MW) Projected 2034-35	- 2029-30 F 2039-40	F Bush Fire Existing/	C Score Wind 2029-30	1,400 2029-30 C (MW) Projected 2034-35	С В 2039-40	
Rene De Climate Ho Tempero Variable Ro Central	wable Potential emand Correlat azard ature Score enewable Energ Existing/ committed There is no exis REZ. The mod	ion gy Oułlook Solar PV 2029-30	F A / (MW) Projected 2034-35	- 2029-30 F 2039-40 eration in this prios, did not	F Bush Fire Existing/	C Score Wind 2029-30 0	1,400 2029-30 C (MW) Projected 2034-35	C B 2039-40 0	
Rene De Climate Ho Tempero Variable Ro Variable Ro Step	wable Potential emand Correlat azard ature Score enewable Energ Existing/ committed There is no exis REZ. The mod	ion gy Oułlook Solar PV 2029-30	F A / (MW) Projected 2034-35	- 2029-30 F 2039-40 eration in this prios, did not	F Bush Fire Existing/ committed	C Score Wind 2029-30 0 0	1,400 2029-30 C (MW) Projected 2034-35 0 250	C B 2039-40 0 250	

Storage				
This REZ is not considered to have potential for significan		Sugg	jested Storage fo	r REZ (MW)
generation. As a result, no storage has been suggested in this REZ, as only deep storage was projected for Tasmania and only under the Step Change scenario.			smania REZ has no Icross any scenario	t been suggested for in the 2020 ISP.
Existing Network Capability				
Description		Existing Hosting acity	Loss Factor Robustness	
Approximately 250 MW of hosting capacity remains in an 220 kV network at George Town.	d around the	250	MW	A ^A
A. Loss factor robustness has been calculated at the 220 kV co	nnection near George	e Town as there is cu	urrently no capacity le	ft of the 110 kV network.
Associated Interconnector Augmentations				
Description		Additional Ho	sting Capacity	Loss Factor Robustness
There are no associated interconnector augmentations wi	th this REZ.			
Possible REZ Augmentations				
Description		Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development
Augmentation Option 1:				
To increase capacity within the North East Tasmania REZ foroposed:	-		\$130 million to \$230 million	Not identified as being required under any ISP scenario
 Establish a new 220 kV substation in an area with ge to the north east 	neration interest	+800 MW		
Connect the new substation to George Town with a 220 kV line	double-circuit			
Available Fault Level (MVA)				
Available fault level in this REZ is influenced by	Scenario	Existing	2029-30	2034-35
development of nearby REZs.	Central	At limits ^A	350	-350
Remediation of T1, T2 and T3 can be addressed by joint solution.	Step	At limits ^A	700	-400
A. Shortfalls in this area are managed by system strength servi	ces procured by TasN	letworks.		
System Strength Remediation Augmentation				

Remediation requirements shown for th solution reported in REZ T3.

T2 – North West Tasmania

Summary					Phas	e 1 REZ	
The North West REZ covers the north west and west coast of Tasmania. With good quality wind resources, a significant portion of the projected new wind development in Tasmania is located within the North West REZ.				0 0 0 0 0	Ballarat •	Melbourne	0
In this ISP, this REZ has been REZ has two load centres, or Additional to the good quali location for pumped hydro c	e at Burnie an ty wind resour	d one at Sheff	ield.				
The North West Tasmania Rt Marinus Link, with the conne					Queenstov		Launceston
REZ Assessment							
Phase 1	highlighted i TRET which i would be ab	n phase 1. VRE s considered in out 150% of its	development in the Step Char is needs by 203	VRE developme in this REZ, utilis nge and high DE D, unless signific either exported	ing the spare i R scenarios. U ant new local e	network capaci Inder the TRET, energy-intensiv	ty, is driven by Tasmania's VRE
Renewable Resources							
Resource			Solar	Wind			
Resource Quali	Y	E			А		
Renewable Potentia	(MW)		150		5,000		
	•	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40
Demand Correlat	ion	F	F	F	С	С	С
Climate Hazard							
Temperature Score		А		Bush Fire	e Score		А
Variable Renewable Ener	gy Outlook						

		Solar PV (MW)			Wind (MW)			Wind (MW)			
	Existing/		Projected		Existing/		Projected	Projected			
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40			
Central		0	0	0							
Step	There is no existing or	150	150	150							
Fast	committed solar	0	0	0	252	252 did not project a	5				
High DER	generation in this REZ.	150	150	150		for this REZ.					
Slow		0	0	0							

Storage

North West Tasmania REZ has high potential to host pumped hydro storage. Hydro Tasmania has announced the most promising sites for the development of pumped hydro. All three sites are located within the North West REZ, two connecting around Sheffield and the third around Farrell. The only storage projected for Tasmania is deep storage under the Step Change scenario, of which all is assumed to connect within this REZ.

Suggested Storage for REZ (MW)							
	Denth	Projected					
	Depth	2029-30	2034-35	2039-40			
Central		0 0		0			
Step		0	200	350			
Fast	Deep	0	0	0			
High DER		0	0	0			
Slow		0	0	0			

Existing Network Capability

Description	Approximate Existing Hosting Capacity	Loss Factor Robustness
There is currently no spare capacity available on the 110 kV circuits west of Burnie. There is still approximately 340 MW of spare capacity on the 220 kV network from Sheffield.	340 MW	A (Solar) / D (Wind) ^A

A. The loss factor robustness for this REZ has two values due to the different connection points for wind and solar. Connection of solar is assumed around Sheffield, and wind around Farrell.

Associated Interconnector Augmentations

Description	Additional Hosting Capacity	Loss Factor Robustness
Marinus Link Stage 1 (Early Works): A new 750 MW HVDC interconnector between the Burnie area in Tasmania and the Latrobe Valley in Victoria. Marinus Link Stage 1 does not increase the REZ hosting capacity within this REZ, as it does not extend the current 220 kV transmission network towards Hampshire or Montague	-	-
Marinus Link Stage 2 (Early Works): A new second 750 MW HVDC interconnector between the Burnie area in Tasmania and the Latrobe Valley in Victoria.	+600 MW	A (Solar) / D (Wind) ^B

B. The loss factor robustness for this REZ has two values due to the different connection points for wind and solar. Connection of solar is assumed around Sheffield, and wind around Farrell.

Possible REZ Augmentations

Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development
Augmentation Option 1:			
To allow for the connection of generation in the Hampshire area, the following is proposed:		\$150 million	This is built as part of Marinus Link in Step
• Rebuild Burnie–Sheffield 220 kV line as a double-circuit	+800 MW	to \$280 million	Change and
• Establish a new 220 kV substation at Hampshire			High DER scenarios
A new double-circuit Burnie–Hampshire 220 kV line			

	\$210	Not identified as being required under any ISP scenario	
+800 MW	million to \$400		
	million	SCE	
Scenario	Existing	2029-30	2034-35
Central	At limits ^c	-50	-750
Step	At limits ^c	50	-1,800
	Scenario Central	+800 MW ^{\$210} million to \$400 million Scenario Existing Central At limits ^C	+800 MW hillion to \$400 million to \$400 million Scenario Central At limits ^c -50

System Strength Remediation Augmentation

Remediation requirements for this REZ are due to expansion of VRE in neighbouring REZs, and are met through a joint solution reported in REZ T3.

T3 – Tasmania Midlands

Summary						Phase 1 ar	nd phase 2	
The Tasmania Midlands REZ has one of the best wind capacities within the NEM and has good pumped hydro resources. It is located close to major load centres at Hobart.				Ballarat • Melbourne				
Waddamana	-circuit Palmersto a–Lindisfarne 220 144 MW) is the or	kV lines pass t	hrough this RE	Z. Cattle Hill				<u>k</u>
	o transmission ne connects, export t					Queenstown	Contraction of the second seco	ston
REZ Assessi	ment							
Phase 1 and	phase 2	developmen Tasmania's V intensive ind The develop hosting capa	t in this REZ ex (RE would be al ustry was deve ment of this RE city of this REZ	ceeds the existi bout 150% of it loped. The surp Z in phase 2 is by 540 MW in	ands is identified ing spare network is needs by 2030, olus would have t further supported each stage. VRE ne Slow Change s	capacity befo unless signific o be either exp d by Marinus L development	ore 2030. Unde ant new local e ported or curta ink which incre	r the TRET, energy- iled. eases the
Renewable	e Resources							
	Resource			Solar			Wind	
Г	Resource Quali	Y		E			А	
Rene	wable Potentia	(MW)		_			3,400	
De	emand Correlat	ion	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40
			F	F	F	С	С	С
Climate Ho	azard							
Temper	ature Score	Temperature Score A		Bush Fire Score				
								D
Variable Re	enewable Energ	gy Outlook						D
Variable R	enewable Energ	gy Outlook Solar PV				Wind	(MW)	D
Variable R	Existing/				Existing/	Wind	(MW) Projected	D
Variable R			′ (MW)	2039-40	Existing/ committed	Wind 2029-30		D 2039-40
Variable Re Central	Existing/	Solar PV	r (MW) Projected	2039-40			Projected	
	Existing/ committed	Solar PV 2029-30	r (MW) Projected 2034-35			2029-30	Projected 2034-35	2039-40
Central	Existing/ committed There is no exis REZ. The mod	Solar PV 2029-30 sting or commi elling outcome	r (MW) Projected 2034-35	eration in this rios, did not		2029-30 50	Projected 2034-35 250	2039-40 1,200

Slow

0

0

0

Storage				
The Tasmania Midlands REZ has potential to host pumped Hydro Tasmania has not included any pumped hydro opti Midlands REZ in its latest review of promising pumped hydro only storage projected for Tasmania is deep storage unde Change scenario which is assumed to connect in the North REZ.	Suggested Storage for REZ (MW) Tasmania Midlands REZ has not been suggested for storage across any scenario in the 2020 ISP.			
Existing Network Capability				
Description	escription			Loss Factor Robustness
The existing 220 kV network which extends from Palmerst Waddamana to Liapootah and from Waddamana to Lindis hosting capacity of approximately 480 MW.		48	30 MW	A
Associated Interconnector Augmentations				
Description		Additional H	osting Capacity	Loss Factor Robustness
Marinus Link Stage 1 (Early Works): A new 750 MW HVDC interconnector between the Burnie and the Latrobe Valley in Victoria.	A new 750 MW HVDC interconnector between the Burnie area in Tasmania			A
Marinus Link Stage 2 (Early Works): A new second 750 MW HVDC interconnector between the Tasmania and the Latrobe Valley in Victoria.	A new second 750 MW HVDC interconnector between the Burnie area in			A
Possible REZ Augmentations				
Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness
Augmentation Option 1: To increase capacity within the Tasmania Midlands REZ the following is proposed: • A new double-circuit Palmerston–Sheffield 220 kV line	+800 MW	\$110 million to \$200 million	Built as part of Marinus Link in Central and Fast Change. Brough forward Fast Change and High DER (2027-28/ 2028-29)	A
ugmentation Option 2: p increase capacity to generation connection over and pove the build of Palmerston-Sheffield 220 kV line: - A new double-circuit Palmerston–Waddamana 220 kV ine		\$60 million to \$120 million	Depends on the location of generation interest within this zone	-
Available Fault Level (MVA)				
Available fault level in this REZ is influenced by planting	Scenario	Existing	2029-30	2034-35
of wind from the late 2020s.	Central	At limits ^A	-150	-800
Remediation of T1, T2 and T3 can be addressed by joint solution.	Step	At limits ^A	150	-3,750
A. Shortfalls in this area are managed by system strength servic	es procured by TasNe	etworks.	1	

System Strength Remediation Augmentation							
	Description	Date Required	Cost				
Central	Establish 1 x 125 MVAr synchronous condenser.	2030-31	\$40 million to \$55 million				
Step	Establish 4 x 125 MVAr synchronous condensers.	2030-31	\$175 million to \$220 million				
	Establish additional 3 x 125 MVAr synchronous condensers.	2032-33	\$130 million to \$165 million				

A5.4.6 Victoria REZ scorecards

V1 – Ovens Murray

Summary

The Ovens Murray REZ has been identified as a candidate REZ due to this REZ having good pumped hydro resources. There is currently 770 MW of installed hydro generation within this zone. Good potential pumped hydro locations within this zone and the proximity of this REZ to good solar resources, makes Ovens Murray REZ a good candidate for meeting some of the pumped hydro needs in Victoria.

REZ Assessment

N/A

Slow

Ovens Murray REZ does not have any projected VRE development. It has not been highlighted for any REZ phase development.

Renewable Resources

	Resource		Solar			Wind		
I	Resource Qualii	У		D		В		
Rene	Renewable Potential (MW)			_			_	
		2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
De	Demand Correlation		F	F	F	С	С	С
Climate Ho	azard							
Tempere	ature Score		В		Bush Fire Score		E	
Variable Re	enewable Energ	gy Outlook						
		Solar PV	/ (MW)		Wind (MW)			
	Existing/		Projected		Existing/	Projected		
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40
Central								
Central Step	Thora is no ovi	ting or comm	itted color good	protion in this	There is no ovi	isting or comm	sitted wind gon	oration in this
		elling outcome	itted solar gene es, for all scena generation for 1	rios, did not	REZ. The mod	delling outcom	nitted wind gen les, for all scena generation for	arios, did not

Storage							
Ovens Murray has been highlighted as having significant potential for pumped hydro generation	Suggested Storage for REZ (MW)						
within Victoria.			Projected				
Ovens Murray is connected to the Victoria load centre via two 330 kV lines from Dederang to South Morang. It also lies on the interconnector flow path between		Depth	2029-30	2034-35	2039-40		
New South Wales and Victoria.	Central	_	0	0	0		
No storage has been projected in Victoria in the Central, Fast Change and the High VRE scenarios before 2040.	Step		100	100	300		
Storage, due to this zone's pumped hydro potential, has been suggested for the Step Change scenario.	Fast	Medium	0	0	0		
Ovens Murray is close to both the Melbourne load centre and the solar generation projected for Central	High DER		0	0	0		
orth Victoria and has thus been suggested for storage nder this scenario.	Slow		0	0	0		
Existing Network Capability							
Description			Approximate Existing Hosting Capacity		Loss Factor Robustness		
Ovens Murray REZ lies along the path of the existing Vict interconnector.	oria - New Sou	uth Wales	300 MW N,				
Associated Interconnector Augmentations							
Description			Additional Hosting Loss Factors Capacity Robustne				
There are no associated interconnector augmentations of	n the optimal o	development pa	ath with this REZ				
Available Fault Level (MVA)							
		Scenario	Existing	2029-30	2034-35		
Available fault level in this REZ is influenced by pumped h step from the late 2020s.	nydro in the	Central	900	950	950		
		Step	900	2,050	2,150		
System Strength Remediation Augmentation							
Remediation not required with forecast level of VRE in th	e Central and S	Step Change sc	enarios.				

V2 – Murray River

Summary

The Murray River REZ has solar resources. Despite being remote and electrically weak, this REZ has attracted significant investment in solar generation with more than 640 MW of generation installed and committed. The existing 220 kV network between Bendigo and Red Cliffs is electrically weak, with MLFs declining sharply as new generators connect. Voltage stability and thermal limits currently restrict the output of generators within this REZ.

The VNI West project is recommended to upgrade transfer capability between Victoria and New South Wales via either Kerang or Shepparton. The development of VNI West via Kerang would significantly increase the ability for renewable generation to connect in this zone. The proposed new interconnector between New South Wales and South Australia (Project EnergyConnect) will facilitate a small improvement in capacity within Murray River REZ.

Phase 2 REZ

Note: In the 2018 ISP, the Murray River candidate REZ spanned over North West Victoria and South West New South Wales towards Darlington Point. In the 2020 ISP, the 2018 Murray River candidate REZ has been split into two REZs, one in New South Wales and one in Victoria.

REZ Assessment

	Murray River REZ has development in phase 2
Dhace 2 DE7	EnergyConnect, an actionable ISP project. Pro
Phase 2 REZ	generation hosting capacity in the Red Cliffs a
	The second second second second second

2. Phase 2 VRE development is supported by Project pject EnergyConnect facilitates a small increase in area. VNI West (Kerang route) will further support VRE development within this zone.

Renewable Resources

Resource	Solar			Wind			
Resource Quality	С			D			
Renewable Potential (MW)		4,700		_			
	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demand Correlation	F	F	F	D	С	С	

Climate Hazard

Temperature Score	E	Bush Fire Score	С

		Solar PV (MW)				Wind (MW)				
	Existing/		Projected		Existing/ committed	Projected		d		
	committed	2029-30	2034-35	2039-40		2029-30	2034-35	2039-40		
Central		400	400	400						
Step		400	600	600	Th is					
Fast	641	400	400	400	There is no existing or committed wind generation in REZ. The modelling outcomes, for all scenarios, did					
High DER		400	400	400	project additional wind generation for this F			this ReZ.		
Slow		400	400	400						

Storage						
		Suggeste	d Storage for I	REZ (MW)		
			Projected			
		Depth	2029-30	2034-35	2039-40	
	Central		0	0	0	
	Step		0	0	0	
Murray River REZ is not considered to have potential for	Fast	Shallow	0	0	0	
significant pumped hydro generation. Due to this lack of potential pumped hydro generation, shallow and	High DER	-	0	0	0	
medium storage has been suggested for this REZ.	Slow	_	0	100	100	
	Central		0	0	0	
	Step	_	0	0	0	
	Fast	Medium	0	0	0	
	High DER	_	0	0	0	
	Slow		0	0	150	
Existing Network Capability						
Description		Approximate Existing Hosting Capacity Robustne				
Murray River REZ, which has no additional hosting capacit connected via a weak 220 kV line from Bendigo to Red Cli and Wemen.		- E			E	
Associated Interconnector Augmentations						
Description		Additional Hosting Capacity		itv/	Loss Factor Robustness	
Project EnergyConnect (Actionable ISP project): A new 330 kV interconnector between Robertstown in Sou and Wagga Wagga in New South Wales, via Buronga.	uth Australia	+380 MW			С	
VNI West (Actionable ISP Project):						
A new 500 kV interconnector between Victoria and NSW. multiple credible corridors for VNI West of which one opti Kerang, opens capacity within this REZ (see Appendix 3).		+2,0	00 MW		-	
Possible REZ Augmentations						
Description		Additional Hosting Capacity	Upgrade Cost Estimo		velopment	

Augmentation Option 1:			
Extend Murray River REZ by augmenting the 220 kV network:			
 Build a new double-circuit 220 kV Kerang–Red Cliffs 220 kV line, via Wemen 	+1,200 MW	\$600 million to \$1,120	Not identified as being required under any ISI
Build a new double-circuit Bendigo–Kerang 220 kV line		million	scenario
Build a new double-circuit Bendigo–Ballarat ^A 220 kV line			
• A new Ballarat ^A 500/220 kV 1,000 MVA transformer			
Augmentation Option 2:			
Extend Murray River REZ if VNI West (Shepparton route) is developed and interest for Murray River REZ is around Kerang:			Not identified as bein
Establish a new 500 kV substation at Bendigo	+1,500 -	\$360 million to	Not identified as bein required under any IS
 Turn both Ballarat^A–Shepparton 500 kV lines into Bendigo 	2,000 MW ^B	\$680 million	scenario
Build a double-circuit Bendigo–Kerang 500 kV line			
 Establish 2 x 500/220 kV transformers at Kerang 			

B. Augmentation hosting capacity dependant on generation within Western Victoria, Central North Victoria, and South West Victoria.

Available Fault Level (MVA)

		Scenario	Existing	2029-30	2034-35
Available fault level in this REZ is influenced by planting of solar PV from the late 2020s. Central Step		Central	At limit [₿]	200	-300
		Step	At limit [₿]	-250	-1,650
C. Existin	g system strength limits in this area already requ	uiring remediation by co	nnecting generatior	n. Shortfall already de	clared for Red Cliffs.
System St	rength Remediation Augmentation				
	Description		Date Required		Cost
Central	Description Remediation not required with forecast Central scenario.	t level of VRE in the			Cost -

V3 – Western Victoria

Summary The Western Victoria REZ has good to excellent guality wind resources.

The existing and committed renewable generation within this REZ exceeds 1 GW, all of which is from wind generation. The current network is constrained and cannot support any further connection of renewable generation without transmission augmentation.

The Western Victoria Transmission Network Project is a committed ISP project, with the preferred option to expand generation within this zone as follows:

- A new substation north of Ballarat
- A new 220 kV double-circuit line from Bulgana to the new substation north of Ballarat (Via Waubra)
- A new 500 kV double-circuit line from a new substation north of Ballarat to Sydenham
- 2 x 500/220 kV 1,000 MVA transformers at the new substation north of Ballarat

REZ Assessment

Phase 1 and phase 2 REZ

This REZ has development in phase 1 and phase 2. Early development of generation in Western Victoria is supported by the committed Western Victoria Transmission Network Project. The phase 1 development is driven in this REZ to help meet VRET. Phase 2 development is supported by VNI West.

Renewable Resources

Resource	Solar			Wind			
Resource Quality	D			В			
Renewable Potential (MW)		400			2,800		
Demand Correlation	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demana Correlation	F	F	F	D	С	С	

Climate Hazard

Temperature Score	D	Bush Fire Score	D

	Solar PV (MW)				Wind (MW)			
	Existing/ committed	Projected		Existing/	Projected			
		2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40
Central		100	100	400		700	700	850
Step	There is no existing or	0	400	400	1,631	700	700	1,050
Fast	committed solar	0	0	400		700	700	1,050
High DER	generation in this REZ.	0	0	0		450	450	450
Slow		0	0	0		450	450	450

Depth Shallow	2029-30 0 0 0 0 0 0	Projected 2034-35 0 0 0 0 100	d 2039-40 0 0 0 0 0 100
	0 0 0 0 0	0 0 0 0	0 0 0 0 0 0
Shallow	0 0 0 0	0 0 0	0 0 0
Shallow	0 0 0	0	0
Shallow	0	0	0
	0		
		100	100
	0		
	Ŭ	0	0
	0	0	0
Medium	0	0	0
	0	0	0
	0	0	150
Description		Approximate Existing Hosting Capacity	
150 MW after oject.	450	MW	A
	50 MW after	0 0 0 50 MW after	0 0 0 0 0 0 0 0 0 0 0 0

DescriptionAdditional Hosting CapacityLoss Factor
RobustnessVNI West (Actionable ISP Project):A new 500 kV interconnector between Victoria and NSW. There are
multiple credible corridors for VNI West of which two options, one
via Kerang and one via Shepparton, increases capacity within this
REZ. See Appendix 3 for more information.+1,000 MWA

Possible REZ Augmentations Additional **Upgrade** Cost ISP Hosting Description Estimate Development Capacity Augmentation Option 1: Extend Western Victoria REZ by augmenting the 500 kV network: Not identified Build a new single-circuit 500 kV line from Tarrone/Mortlake to as being • \$490 million to \$920 the new 500 kV substation north of Ballarat^A. 1,500 MW required under million any ISP Build new 500/132 kV substations between Tarrone/Mortlake • scenario and the Ballarat area. 500/132 kV transformation

Augmen	tation Option 2:						
Extend We	estern Victoria REZ by augmenting the 22	20 kV network:					
Nort	l a new double-circuit 220 kV line from n h of Ballarat ^a to Bulgana turning one circ Crowlands			Not identified as being			
• Build new single-circuit 220 kV line between the existing Ballarat substation and the new substation north of Ballarat ^A .		+1,000 MW	\$170 million to \$320 million	required under any ISP scenario			
 Insta kV lir 	ll a series reactor on the Crowlands–Arar ne	at–Ballarat 220					
,	500/220 kV transformer at the new substation north of Ballarat ^A						
A. A new	v terminal substation north of Ballarat which will be	established through \	Vestern Victoria Trar	smission Network Projec	t		
Available	e Fault Level (MVA)						
		Scenario	Existing	2029-30	2034-35		
	Available fault level in this REZ is influenced by planting of wind from the late 2020s.						
	,	Central	At limit ^B	-1,350	-250		

	Scenario Existing		Existing	2029-30	2034-35						
Available fault level in this REZ is influenced by planting of wind from the late 2020s.		Central	At limit ^B	-1,350	-250						
		Step	At limit [₿]	-250	-1,650						
B. Existing system	strength limits in this area are already r	equiring remediati	on by connecting ge	eneration. Shortfall alr	eady declared for Red Cliffs						
System Strength	Remediation Augmentation										
Description				Date Required	Cost						
Central	Establish 1 x 250 MVAr synchrone	nous condenser.		ous condenser.		ous condenser.		sh 1 x 250 MVAr synchronous condenser.		2025-26	\$45 million to \$60 million

Establish 1 x 250 MVAr synchronous condenser.

2027-28

\$45 million to \$60 million

Step

V4 – South West Victoria

Summary	Phase 1 REZ
The South West Victoria REZ has moderate to good quality wind resource in close proximity to the 500 kV and the 220 kV networks in the area. Currently the 220 kV network is congested, however there is still approximately 750 MW of hosting capacity remaining on the 500 kV network. There are several large wind farms already in service including Macarthur (420 MW) and Portland (149 MW). The total committed and in service wind generation in the area exceeds 1.7 GW.	Adelaide
REZ Assessment	

Phase 1 REZ	South West Victoria REZ has development in phase 1. The development in this REZ in phase 1 uses the
PHOSE I REZ	existing network capacity to help meet the VRET.

Renewable Resources

Resource	Solar			Wind			
Resource Quality	E			C			
Renewable Potential (MW)	-			3,900			
Downed Completion	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demand Correlation	E	F	F	С	С	С	

Climate Hazard

Temperature Score	C	Bush Fire Score	D

		Solar P\	/ (MW)		Wind (MW)				
	Existing/		Projected		Existing/ committed	Projected			
	committed	2029-30	2034-35	2039-40		2029-30	2034-35	2039-40	
Central						750	750	750	
Step			•••••			750	850	2,600	
Fast	REZ. The mod	here is no existing or committed solar generation in this REZ. The modelling outcomes, for all scenarios, did not		rios, did not	1,739	300	300	1,000	
High DER	project ad	additional solar generation for this REZ.				750	750	750	
Slow						750	750	750	

Storage					
		Sugge	sted Storage fo	or REZ (MW)	
		Danth		Projected	
		Depth	2029-30	2034-35	2039-40
	Central		0	0	0
	Step		0	0	0
The South West Victoria REZ is not considered to have potential for significant	Fast	Shallow	0	0	0
pumped hydro generation. Due to this lack of potential pumped hydro generation, shallow	High DER		0	0	0
and medium storage has been suggested for this REZ.	Slow		0	100	100
	Central		0	0	0
	Step	Medium	0	0	0
	Fast		0	0	0
	High DER		0	0	0
	Slow		0	0	150
Existing Network Capability					
Description				nate Existing I Capacity	Loss Factor Robustness
The current hosting capacity of 750 MW within network between Moorabool and Heywood. Th between Moorabool and Terang is currently co	ne 220 kV and 66		75	0 MW	A ^A
A. Loss factor robustness has been calculated on the	ne 500 kV network.				
Associated Interconnector Augmentation	S				
Description			Additional H	Loss Factor Robustness	
There are no associated interconnector augme	ntations with this	REZ.			
Possible REZ Augmentations					
Description		Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development	Loss Factor Robustness
Augmentation Option 1: Extend South West Victoria REZ by augmenting network: • Build a new 500 kV Mortlake–Moorabool- single-circuit line		+3,000 MW	\$360 million to \$660 million	Not identified as being required under any ISP scenario	-
Augmentation Option 2:					

\$270 million

to \$510

million

Step (2036-37),

Fast (2040-41)

Extend South West Victoria REZ by augmenting the 500 kV network to a new substation north of Ballarat: +2,500 MW^B

- Build a new 500 kV single-circuit line from Mortlake to a new substation north of Ballarat
- Turn Tyrone Hunter Gully into Mortlake substation

B. Additio	onal hosting capacity depend on the development of VNI West a	and generation deve	elopment within We	stern Victoria.	
Available	Fault Level (MVA)				
		Scenario	Existing	2029-30	2034-35
Available fa	ault level in this REZ is influenced by planting of wind te 2020s.	Central	At limits	-1,900	-1,500
		Step	At limits	-250	-2,550
System Str	rength Remediation Augmentation				
	Description	Date Required	C	Cost	
Central Establish 1 x 250 MVAr synchronous condenser.			2026-27	\$45 million to \$60 million	
Step	Establish 1 x 250 MVAr synchronous condenser.		2030-31	\$45 million to \$60 million	

V5 - Gippsland

Summary

Two wind farms are in service in the Gippsland REZ: Bald Hill Wind Farm (106 MW) and Wonthaggi Wind Farm (12 MW). There is currently significant wind generation interest in this area, including a large offshore wind farm of 2,000 MW.

Due to the strong network in this REZ (with multiple 500kV and 220kV lines from Latrobe Valley to Melbourne designed to transport energy from major Victorian brown coal power stations), significant generation can be accommodated with the retirements of coal fired generation in this area.

REZ Assessment

N/A

Wind development is projected in Gippsland REZ if VNI West is not developed by 2030. Development in this REZ could makes use of existing network capacity to help meet the VRET.

Renewable Resources

Resource	Solar			Wind			
Resource Quality		D			D (on–shore) B (off–shore)		
Renewable Potential (MW)		_			2,000 (on–shore) 4,000 (off–shore)		
Demand Correlation	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40	
Demana Correlation	E	F	F	С	С	С	

Climate Hazard

Temperature Score C Bush Fire Score D

	Solar PV (MW)			Wind (MW)					
	Existing/		Projected		Existing/	Projected			
	committed	2029-30	2034-35	2039-40	committed	2029-30	2034-35	2039-40	
Central						650	650	650	
Step	These is a suit					50	50	1,150	
Fast	REZ. The mod	There is no existing or committed solar generation in this REZ. The modelling outcomes, for all scenarios, did not			119	0	0	0	
High DER	project additional solar generation for this REZ.				200	200	200		
Slow						900	900	900	

Storage

		Sugg	ested Storage	for REZ (MW)	
	Depth	Projected			
		Depth	2029-30	2034-35	2039-40
	Central		0	0	0
Gippsland REZ has a strong 500 kV network connecting coal fired power stations to the Melbourne load centre as well as interconnection to Tasmania via Basslink. Due to the high network capacity, Gippsland REZ is	Step	Shallow	0	0	0
	Fast		0	0	0
	High DER		0	0	0
good candidate for storage. torage has been projected in this REZ for the	Slow		0	100	100
tep Change and Slow Change scenario.	Central		0	0	0
	Step		100	100	550
	Fast	Medium	0	0	0
	High DER		0	0	0
	Slow		0	0	150
existing Network Capability					
oscription			Approxim	ate Existing	Loss Facto

Description	Approximate Existing Hosting Capacity	Loss Factor Robustness
There is significant 500 kV and 220 kV network connecting the Gippsland REZ to the Melbourne load centre.	2,000 MW	A ^A

A. Loss factor robustness has been projected for connection at 500 kV.

Associated Interconnector Augmentations

Description		Additional Host	Loss Factor Robustness	
There are no associated interconnector augmentations with this REZ.				
Available Fault Level (MVA)				
	Scongrio	Evicting	2020 20	2024 25

Available fault level in this REZ is influenced by planting of wind	Scenario	Existing	2029-30	2034-35		
from the late 2020s. Pumped hydro in the step is expected to form part of the system	Central	4,850	2,950	3,850		
strength solution for this REZ.	Step	4,850	5,200	1,950		
System Strength Remediation Augmentation						

Remediation not required with forecast level of VRE in the Central and Step Change scenarios.

V6 - Central North Victoria

Summary	Phase 1 and phase 2
The Central North Victoria REZ, after careful assessment and consultation, was included in the 2020 ISP as a new REZ candidate. This REZ has moderate quality wind and solar resources.	Mildura Wollongong Wagga Wagga Canberra
In addition to the currently in service and committed solar farms, Numurkah (100 MW) and Winton Solar Farm (85 MW), the solar generation applications exceed 200 MW whilst the enquiries within this zone exceeds 2.5 GW.	
The VNI West project is recommended to upgrade transfer capability between Victoria and New South Wales via either Kerang or Shepparton. The development of VNI West via Shepparton would significantly increase the ability for renewable generation to connect in this zone.	Ballarat • Melbourne

REZ Assessment

Phase 1 and phase 2

Central North Victoria REZ has development in phase 1 and phase 2. The development in this REZ in phase 1 uses the existing network capacity to help meet the VRET. VNI West (Shepparton route) supports the development of wind and solar within this region beyond the existing hosting capacity.

Renewable Resources

Resource		Solar		Wind		
Resource Quality	С			D		
Renewable Potential (MW)	1,900			1,600		
Denver d. Comoladian	2019-20	2029-30	2039-40	2019-20	2029-30	2039-40
Demand Correlation	F	F	F	D	D	D
Climate Hazard						

Temperature Score	D	Bush Fire Score	D

	Solar PV (MW)			Wind (MW)					
	Existing/		Projected		Existing/ committed	Projected			
	committed	2029-30	2034-35	2039-40		2029-30	2034-35	2039-40	
Central		400	400	1,200		400	400	400	
Step		400	400	1,900	There is no existing or	400	400	650	
Fast	185	100	100	750	committed wind	400	400	400	
High DER		200	200	200	generation in this REZ.	400	400	400	
Slow		300	300	300		0	0	0	

Storage

	Suggested Storage for REZ (MW)					
		Depth Shallow	Projected			
		Depin	2029-30	2034-35	2039-40	
	Central		0	0	0	
Central North Victoria REZ is not considered to have potential for significant pumped hydro generation. Due to the lack of potential pumped hydro generation, shallow and medium storage has been suggested for this REZ.	Step		0	0	0	
	Fast	Shallow	0	0	0	
	High DER		0	0	0	
	Slow		0	100	100	
	Central		0	0	0	
	Step		0	0	0	
	Fast	Medium	0	0	0	
	High DER		0	0	0	
	Slow		0	0	150	

Existing Network Capability

Description	Approximate Existing Hosting Capacity	Loss Factor Robustness
The current hosting capacity of the 220 kV network between Dederang–Glenrowan–Shepparton–Bendigo is approximately 800 MW.	800 MW	D

Associated Interconnector Augmentations

Description	Additional Hosting Capacity	Loss Factor Robustness
VNI West (of which early works are actionable):		
A new 500 kV interconnector from a substation north of Ballarat in Victoria to Wagga Wagga in New South Wales, via Shepparton.	+2,000 MW ^A	A

A. Only if VNI West traverses through Shepparton.

Possible REZ Augmentations

Description	Additional Hosting Capacity	Upgrade Cost Estimate	ISP Development
 Augmentation Option 1 (If built before VNI West): Extend Central North Victoria by augmenting the 500 kV network: Build a new 500 kV substation near Shepparton Build a new 500 kV double-circuit line from a new substation north of Ballarat to Shepparton Install 2 x 500/220kV transformers at Shepparton 	+1,700 MW	\$490 million to \$900 million	Not identified as required under any ISP scenario
Augmentation Option 2: Extend Central North Victoria with additional 220 kV lines:	+ 600 MW	\$270 million to \$500 million	Not identified as required under any ISP scenario

 A new double-circuit 220 kV line from Bendigo to a new substation north of Ballarat. A new double-circuit Bendigo–Shepparton 220 kV line 			
Augmentation Option 3:			
Extend Central North Victoria with additional 220 kV lines:	+800 MW	\$390 million to \$730 million	Not identified as required under any ISP scenario
• A new double-circuit 220 kV line from Bendigo to a new substation north of Ballarat			
A new double-circuit Bendigo–Shepparton–Glenrowan 220 kV line			

Available Fault Level (MVA)

Available fault level in this REZ is influenced by planting of wind from the late 2020s.	Scenario	Existing	2029-30	2034-35
	Central	250	-500	-500
	Step	250	950	-500

System Strength Remediation Augmentation

	Description	Date Required	Cost	
Central	Establish 1 x 125 MVAr synchronous condenser.	2028-29	\$40 million to \$55 million	
Step	Establish 1 x 125 MVAr synchronous condenser.	2030-31	\$40 million to \$55 million	