

Draft report Stakeholder feedback template:

AEMO Review of technical requirements for connection (NER 5.2.6A)

Stakeholders making a submission on the recommendations set out in the AEMO draft report may use the below template to provide feedback. Please consider the confidentiality disclaimer at the end of this document.

Stakeholder: Andrew Tuckey, Hitachi Energy Australia Pty Ltd

Schedule 5.2 Conditions for Connection of Generators

Issue	Schedule 5.2 Generator Recommendation feedback
NER S5.2.1 – Outline of requirements	

Application of Schedule 5.2 based on plant	[feedback on draft report recommendation]
type instead of registration category and	
extension to synchronous condensers	

NER S5.2.5.1 – Reactive power capability

Voltage range for full reactive power requirement	
Treatment of reactive power capability considering temperature derating	
Compensation of reactive power when units are out of service	

S5.2.5.1, S5.2.5.5, S5.2.5.7, S5.2.5.8, S5.2.5.10

Simplifying standards for small connections

NER S5.2.5.2 – Quality of electricity generated

Reference to plant standard

Stakeholder feedback | Andrew Tuckey, Hitachi Energy Australia Pty Ltd | AEMO review of technical requirements for connection under Schedules 5.2, 5.3 and 5.3a of the NER

Schedule 5.2 Generator Recommendation feedback

NER S5.2.5.4 – Generating system response to voltage disturbances

Overvoltage requirements for medium voltage and lower connections	
Requirements for overvoltages above 130%	
Clarification of continuous uninterrupted operation in the range 90% to 110% of normal voltage	

NER S5.2.5.5 – Generating system response to disturbances following contingency events

Definition of end of a disturbance for multiple fault ride through	
Form of multiple fault ride through clause	
Number of faults with 200 ms between them	
Reduction of fault level below minimum level for which the plant has been tuned	
Active power recovery after a fault	
Rise time and settling time for reactive current injection	
Commencement of reactive current injection	
Clarity on reactive current injection volume and location and consideration of unbalanced voltages	
Metallic conducting path	
Reclassified contingency events	

NER S5.2.5.7 – Partial load rejection

Application of minimum generation to energy storage systems	
Clarification of meaning of continuous uninterrupted operation for NER S5.2.5.7	

NER S5.2.5.8 - Protection of generating systems from power system disturbances

Emergency over-frequency response

Issue

Schedule 5.2 Generator Recommendation feedback

NER S5.2.5.10 – Protection to trip plant for unstable operation

Requirements for stability protection on asynchronous generating systems	I have 2 comments about the suggested rule change:
	 (1) The rules change suggested in the report is easy to misunderstand. Can I ask that it be worded carefully so there is no ambiguity in the reading. Please make a clear distinction between the AAS and the MAS with regard to the following: a. detecting an instability, b. detecting the contribution to the instability, c. the requirements for a PMU for instability analysis, d. a system to automatically disconnect the production unit, e. a system where the NSP or AEMO can disconnect the production unit (remotely),
	f. the 30MW threshold for automatic/remote disconnection (does it mean $a \ge 30$ MW unit, or a unit producing ≥ 30 MW?).
	(2) It seems that strict adherence to the automatic detect and disconnect rules could cause the detection and disconnection of too many generators given the below scenarios. This technical aspect should be addressed (but maybe the solution doesn't have to be in the rules):
	Let's take a very simple case to explain:
	 one generator is operating fine. another generator in an adjacent zone goes online, and this causes oscillations between the two. now both have detectable instability (the first criteria), and both would have a detectable contribution to the instability (the second part), so automatic "detect contribution and disconnect" protection systems for each should disconnect both.
	This scenario could be extended to 3 generators thus:
	 two generators are operating fine. another generator in an adjacent zone goes online, and this causes oscillations between all three generators (between the two zones). now all have detectable instability (the first criteria), and all would have a detectable contribution to the instability (the second part), so automatic "detect contribution and disconnect" protection systems for each should disconnect all three generators.

NER S5.2.5.13 – Voltage and reactive power control

Voltage control at unit level and slow setpoint change	
Realignment of performance requirements to optimise power system performance over expected fault level (system impedance) range – Voltage control	
Materiality threshold on settling time error band and voltage settling time for reactive power and power factor setpoints	
Clarification of when multiple modes of operation are required	
Impact of a generating system on power system oscillation modes	

Stakeholder feedback | Andrew Tuckey, Hitachi Energy Australia Pty Ltd | AEMO review of technical requirements for connection under Schedules 5.2, 5.3 and 5.3a of the NER

Issue

Issue

Schedule 5.2 Generator Recommendation feedback

Definition – continuous uninterrupted operation

Recognition of frequency response mode, inertial response and active power response to an angle jump

Schedule 5.3a Conditions for connection of MNSPs

Issue	Schedule 5.3a HVDC Recommendation feedback
-------	--

NER S5.3a.1a Introduction to the schedule

Alignment of schedule with plant-type rather than registration category	
---	--

NER S5.3a.8 – Reactive power capability

Reactive power

NER S5.3a.13 - Market network service response to disturbances in the power system

Voltage disturbances	
Frequency disturbances	
Fault ride through requirements	

NER S5.3a.4 – Monitoring and control requirements

Remote monitoring and protection against	
instability	

New standards

Voltage control	
Active power dispatch	

Multiple Schedules

Issue

Multiple schedule Recommendation feedback

NER Multiple clauses

Stakeholder feedback | Andrew Tuckey, Hitachi Energy Australia Pty Ltd | AEMO review of technical requirements for connection under Schedules 5.2, 5.3 and 5.3a of the NER

Multiple schedule Recommendation feedback

References to superseded standards

Confidentiality disclaimer

Under clause 5.2.6A(d)(2), AEMO is required to publish all submissions received about this Review on its website. Please identify any part of your submission that is confidential, which you do not wish to be published. Please note that if material identified as confidential cannot be shared and validated with other interested persons, then it may be accorded less weight in AEMO's decision-making process than published material. AEMO prefers that submissions be forwarded in electronic format.